Atomically thin MoSe2/graphene and WSe2/graphene nanosheets for the highly efficient oxygen reduction reaction

被引:102
作者
Guo, Jiahao [1 ,2 ]
Shi, Yantao [1 ]
Bai, Xiaogong [1 ]
Wang, Xuchun [2 ]
Ma, Tingli [3 ,4 ]
机构
[1] Dalian Univ Technol, Sch Chem, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[2] Anhui Sci & Technol Univ, Coll Chem & Mat Engn, Fengyang 233100, Anhui, Peoples R China
[3] Dalian Univ Technol, Sch Petr & Chem Engn, Panjin 124221, Peoples R China
[4] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, Kitakyushu, Fukuoka 8080196, Japan
基金
中国国家自然科学基金; 对外科技合作项目(国际科技项目);
关键词
METAL-FREE ELECTROCATALYSTS; GRAPHENE NANOSHEETS; CARBON NANOTUBES; RECENT PROGRESS; FUEL-CELLS; SHEETS; FILMS; TRANSPARENT; MOSE2; NANOPARTICLES;
D O I
10.1039/c5ta06909b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a conceptually new class of 2D materials, inorganic graphene analogue (IGA) ultrathin nanosheets perform an increasingly vital function in various electronic devices. However, the relatively low electrical conductivity of IGA ultrathin nanosheets severely hampers their application as electrode materials in devices. Through in situ synthesis, we report the combination of inorganic graphene and graphene into atomically thin nanosheets as efficient electrocatalysts for the oxygen reduction reaction (ORR). Benefitting from the advantages of both IGAs and reduced graphene oxide, the g-MoSe2 and g-WSe2 nanocomposites showed excellent ORR activity associated with a number of exchanged electrons close to four, which corresponded to the complete reduction of oxygen into water. In particular, the two electrocatalysts exhibited a positive onset potential of -0.02 V (close to that of Pt/C, 0.02 V) and a high kinetic current density (J(K)) of 10.22 mA cm(-2) for g-MoSe2 and 10.77 mA cm(-2) for g-WSe2 at -0.20 V. Compared with commercial Pt/C, these catalysts possess outstanding long-term durability and fuel crossover resistance capacity in alkaline media. Therefore, nanocomposites of inorganic graphene and graphene can be developed into low-cost and efficient alternatives (to the noble metal Pt) to be used as cathodic electrodes in fuel cells.
引用
收藏
页码:24397 / 24404
页数:8
相关论文
共 50 条
  • [1] Characterization of MoSe2(0001) and ion-sputtered MoSe2 by XPS
    Abdallah, WA
    Nelson, AE
    [J]. JOURNAL OF MATERIALS SCIENCE, 2005, 40 (9-10) : 2679 - 2681
  • [2] Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction
    Ai, Wei
    Luo, Zhimin
    Jiang, Jian
    Zhu, Jianhui
    Du, Zhuzhu
    Fan, Zhanxi
    Xie, Linghai
    Zhang, Hua
    Huang, Wei
    Yu, Ting
    [J]. ADVANCED MATERIALS, 2014, 26 (35) : 6186 - +
  • [3] Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity
    Benck, Jesse D.
    Chen, Zhebo
    Kuritzky, Leah Y.
    Forman, Arnold J.
    Jaramillo, Thomas F.
    [J]. ACS CATALYSIS, 2012, 2 (09): : 1916 - 1923
  • [4] Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass -: highly hydrophobic sticky surfaces
    Boscher, ND
    Carmalt, CJ
    Parkin, IP
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (01) : 122 - 127
  • [5] Recent Progress in Non-Precious Catalysts for Metal-Air Batteries
    Cao, Ruiguo
    Lee, Jang-Soo
    Liu, Meilin
    Cho, Jaephil
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (07) : 816 - 829
  • [6] Shape Control of Mn 3 O 4 Nanoparticles on Nitrogen- Doped Graphene for Enhanced Oxygen Reduction Activity
    Duan, Jingjing
    Chen, Sheng
    Dai, Sheng
    Qiao, Shi Zhang
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (14) : 2072 - 2078
  • [7] Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
    Eda, Goki
    Fanchini, Giovanni
    Chhowalla, Manish
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (05) : 270 - 274
  • [8] Fang H, 2012, NANO LETT, V12, P3788, DOI [10.1021/nl301702r, 10.1021/nl3040674]
  • [9] Metallic Few-Layered VS2 Ultrathin Nanosheets: High Two-Dimensional Conductivity for In-Plane Supercapacitors
    Feng, Jun
    Sun, Xu
    Wu, Changzheng
    Peng, Lele
    Lin, Chenwen
    Hu, Shuanglin
    Yang, Jinlong
    Xie, Yi
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (44) : 17832 - 17838
  • [10] Carbon-Supported CoSe2 Nanoparticles for Oxygen Reduction Reaction in Acid Medium
    Feng, Y. J.
    He, T.
    Alonso-Vante, N.
    [J]. FUEL CELLS, 2010, 10 (01) : 77 - 83