Fabrication, Structural Characterization and Optical Properties of the Flower-Like ZnO Nanowires

被引:7
作者
Feng, L. [1 ]
Liu, A. [1 ]
Ma, Y. [1 ]
Liu, M. [1 ]
Man, B. [1 ]
机构
[1] Shandong Normal Univ, Coll Phys & Elect, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
CHEMICAL-VAPOR-DEPOSITION; PULSED-LASER DEPOSITION; AQUEOUS-SOLUTION; LOW-TEMPERATURE; MAGNETIC-PROPERTIES; SOLUTION ROUTE; GROWTH; NANOSTRUCTURES; EVAPORATION; PARTICLES;
D O I
10.12693/APhysPolA.117.512
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Multipod flower-like zinc oxide (ZnO) nanowires have been successfully synthesized on Si(111) substrates using a pulsed laser deposition prepared Zn film as "self-catalyst" by the simple thermal evaporation oxidation of the metallic zinc powder at 850 degrees C without any other catalysts or additives. The pre-deposited Zn films by pulsed laser deposition on the substrates can promote the formation of the ZnO nuclei effectively. Also it can further advance the growth of the flower-like ZnO nanowires accordingly. X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, Fourier transform infrared spectrum, and photoluminescence were used to analyze the structure, morphology, composition and optical properties of the as-synthesized products. The results demonstrate that the nanowires were single crystalline with hexagonal wurzite structure, grown along the [0001] in the c-axis direction. Room temperature photoluminescence spectrum of the ZnO nanowires shows a nearband-edge ultraviolet emission (peak at approximate to 384 nm) and a deep-level green emission (peak at approximate to 513 nm). In addition, the growth mechanism of the flower-like ZnO nanowires is discussed in detail.
引用
收藏
页码:512 / 517
页数:6
相关论文
共 41 条
[1]  
Bagnall DM, 1998, J CRYST GROWTH, V184, P605, DOI 10.1016/S0022-0248(97)00526-5
[2]   Broadband ZnO single-nanowire light-emitting diode [J].
Bao, Jiming ;
Zimmler, Mariano A. ;
Capasso, Federico ;
Wang, Xiaowei ;
Ren, Z. F. .
NANO LETTERS, 2006, 6 (08) :1719-1722
[3]  
BARUAH S, 2009, J CRYST GROWTH, V311, P2459
[4]   Enhancement of the ultraviolet emission of ZnO nanostructures by polyaniline modification [J].
Chang, Ming ;
Cao, Xue Li ;
Zeng, Haibo ;
Zhang, Lide .
CHEMICAL PHYSICS LETTERS, 2007, 446 (4-6) :370-373
[5]   Magnetic properties of cobalt and manganese doped ZnO nanowires [J].
Clavel, G. ;
Pinna, N. ;
Zitoun, D. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2007, 204 (01) :118-124
[6]   The octa-twin tetraleg ZnO nanostructures [J].
Dai, Y ;
Zhang, Y ;
Wang, ZL .
SOLID STATE COMMUNICATIONS, 2003, 126 (11) :629-633
[7]   Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology [J].
Dakhlaoui, Amel ;
Jendoubi, Mouna ;
Smiri, Leila Samia ;
Kanaev, Andrei ;
Jouini, Noureddine .
JOURNAL OF CRYSTAL GROWTH, 2009, 311 (16) :3989-3996
[8]   Synthesis and magnetic properties of Mn doped ZnO nanowires [J].
Deka, Sasanka ;
Joy, P. A. .
SOLID STATE COMMUNICATIONS, 2007, 142 (04) :190-194
[9]   Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy [J].
Heo, YW ;
Varadarajan, V ;
Kaufman, M ;
Kim, K ;
Norton, DP ;
Ren, F ;
Fleming, PH .
APPLIED PHYSICS LETTERS, 2002, 81 (16) :3046-3048
[10]   Position-selective growth of ZnO nanowires by ultrasonic spray pyrolysis [J].
Htay, Myo Than ;
Hashimoto, Yoshio ;
Momose, Noritaka ;
Ito, Kentaro .
JOURNAL OF CRYSTAL GROWTH, 2009, 311 (20) :4499-4504