Weak Generalized Lifting Property, Bruhat Intervals, and Coxeter Matroids

被引:5
作者
Caselli, Fabrizio [1 ]
D'Adderio, Michele [2 ]
Marietti, Mario [3 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
[2] Univ Libre Bruxelles ULB, Dept Math, Blvd Triomphe, B-1050 Brussels, Belgium
[3] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy
关键词
D O I
10.1093/imrn/rnaa124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a weaker version of the generalized lifting property that holds in complete generality for all Coxeter groups, and we use it to show that every parabolic Bruhat interval of a finite Coxeter group is a Coxeter matroid. We also describe some combinatorial properties of the associated polytopes.
引用
收藏
页码:1678 / 1698
页数:21
相关论文
共 26 条
[11]   On generalized weak i-lifting modules [J].
Amouzegar, Tayyebeh .
Italian Journal of Pure and Applied Mathematics, 2016, 36 :65-72
[12]   Generalized nil-Coxeter algebras, cocommutative algebras, and the PBW property [J].
Khare, Apoorva .
GROUPS, RINGS, GROUP RINGS, AND HOPF ALGEBRAS, 2017, 688 :139-168
[13]   A non-nuclear C*-algebra with the weak expectation property and the local lifting property [J].
Pisier, Gilles .
INVENTIONES MATHEMATICAE, 2020, 222 (02) :513-544
[14]   The Sperner property for 132-avoiding intervals in the weak order [J].
Gaetz, Christian ;
Tung, Katherine .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (02) :442-457
[15]   Limit Property for Regular and Weak Generalized Convolution [J].
Jasiulis, Barbara H. .
JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (01) :315-327
[16]   Limit Property for Regular and Weak Generalized Convolution [J].
Barbara H. Jasiulis .
Journal of Theoretical Probability, 2010, 23 :315-327
[17]   A class of generalized Ornstein transformations with the weak mixing property [J].
El Abdalaoui, EH .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (06) :775-786
[18]   Weak and strong structures and the property for generalized topological spaces [J].
Makai, E., Jr. ;
Peyghan, E. ;
Samadi, B. .
ACTA MATHEMATICA HUNGARICA, 2016, 150 (01) :1-35
[19]   On equilibria in constrained generalized games with the weak continuous inclusion property [J].
Khan, M. Ali ;
Mclean, Richard P. ;
Uyanik, Metin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (01)
[20]   On Fuzzy Fixed Points for Fuzzy Maps with Generalized Weak Property [J].
Kutbi, Marwan Amin ;
Ahmad, Jamshaid ;
Azam, Akbar ;
Hussain, Nawab .
JOURNAL OF APPLIED MATHEMATICS, 2014,