Clifford-Fourier transform on hyperbolic space

被引:0
作者
Lian, Pan [1 ,2 ]
Bao, Gejun [1 ]
De Bie, Hendrik [2 ]
Constales, Denis [2 ]
机构
[1] Harbin Inst Technol, Dept Math, West Da Zhi St 92, Harbin 150001, Peoples R China
[2] Univ Ghent, Dept Math Anal, Fac Engn & Architecture, Galglaan 2, B-9000 Ghent, Belgium
关键词
Helgason-Fourier transform; hyperbolic space; fractional calculus; generating function;
D O I
10.1002/mma.4253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new generalization of the Helgason-Fourier transform using the angular Dirac operator on both the hyperboloid and unit ball models. The explicit integral kernels of even dimension are derived. Furthermore, we establish the formal generating function of the even dimensional kernels. In the computations, fractional integration plays a key unifying role. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:3666 / 3675
页数:10
相关论文
共 20 条
[11]   A new construction of the Clifford-Fourier kernel [J].
Constales, Denis ;
De Bie, Hendrik ;
Lian, Pan .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (02) :462-483
[12]   Generalized Fourier Transforms Arising from the Enveloping Algebras of sl(2) and osp(1|2) [J].
De Bie, Hendrik ;
Oste, Roy ;
van der Jeugt, Joris .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (15) :4649-4705
[13]   The Fractional Clifford-Fourier Transform [J].
De Bie, Hendrik ;
De Schepper, Nele .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (05) :1047-1067
[14]   On the Clifford-Fourier Transform [J].
De Bie, Hendrik ;
Xu, Yuan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (22) :5123-5163
[15]  
Delanghe R, 2012, CLIFFORD ALGEBRA AND
[16]  
Helgason S, 1981, TOPICS HARMONIC ANAL
[17]  
Koornwinder T. H., 1984, SPECIAL FUNCTIONS GR, P1
[18]   The kernel of the generalized Clifford-Fourier transform and its generating function [J].
Lian, Pan ;
Bao, Gejun ;
De Bie, Hendrik ;
Constales, Denis .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (02) :214-229
[19]   Generalized Helgason-Fourier Transforms Associated to Variants of the Laplace-Beltrami Operators on the Unit Ball in Rn [J].
Liu, Congwen ;
Peng, Lizhong .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) :1457-1491
[20]  
Wallach N.R., 1973, Harmonic analysis on homogeneous spaces