Clifford-Fourier transform on hyperbolic space

被引:0
作者
Lian, Pan [1 ,2 ]
Bao, Gejun [1 ]
De Bie, Hendrik [2 ]
Constales, Denis [2 ]
机构
[1] Harbin Inst Technol, Dept Math, West Da Zhi St 92, Harbin 150001, Peoples R China
[2] Univ Ghent, Dept Math Anal, Fac Engn & Architecture, Galglaan 2, B-9000 Ghent, Belgium
关键词
Helgason-Fourier transform; hyperbolic space; fractional calculus; generating function;
D O I
10.1002/mma.4253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new generalization of the Helgason-Fourier transform using the angular Dirac operator on both the hyperboloid and unit ball models. The explicit integral kernels of even dimension are derived. Furthermore, we establish the formal generating function of the even dimensional kernels. In the computations, fractional integration plays a key unifying role. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:3666 / 3675
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 1994, Mathematical Surveys and Monographs, DOI DOI 10.1090/SURV/039
[2]  
[Anonymous], 2006, Journal of the Electrochemical Society
[3]  
Antoine JP, 1999, APPL COMPUT HARMON A, V7, P262, DOI 10.1006/acha.1998.0272
[4]   HARMONIC-ANALYSIS FOR VECTOR-FIELDS ON HYPERBOLIC SPACES [J].
BADERTSCHER, E ;
REIMANN, HM .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (03) :431-456
[5]  
Banica V, 2007, COMMUNICATIONS PARTI, V11, P1643
[6]   Continuous wavelet transform on the hyperboloid [J].
Bogdanova, Iva ;
Vandergheynst, Pierre ;
Gazeau, Jean-Pierre .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 23 (03) :285-306
[7]   The Clifford-Fourier transform [J].
Brackx, F ;
De Schepper, N ;
Sommen, F .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (06) :669-681
[8]  
Brackx F., 1982, RES NOTES MATH
[9]  
Brackx F., 2013, TRENDS MATH, V27
[10]  
Camporesi R., 2001, Colloq. Math., V87, P245