Daniell method for power spectral density estimation in atomic force microscopy

被引:6
|
作者
Labuda, Aleksander [1 ]
机构
[1] Asylum Res Oxford Instruments Co, Santa Barbara, CA 93117 USA
关键词
FREQUENCY-RESPONSE; VISCOUS FLUIDS; CALIBRATION; RECONSTRUCTION; INTERFEROMETER; CANTILEVERS; SURFACE; NOISE;
D O I
10.1063/1.4943292
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An alternative method for power spectral density (PSD) estimation-the Daniell method-is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion-the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Atomic force microscopy of starch systems
    Zhu, Fan
    CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2017, 57 (14) : 3127 - 3144
  • [32] Contribution of Chemical Bonding to the Force in Atomic Force Microscopy
    Li Na
    Chen Xi
    Xue Qi-Kun
    ACTA PHYSICO-CHIMICA SINICA, 2014, 30 (02) : 205 - 209
  • [33] Nanoscale surface property estimation using proper orthogonal decomposition in atomic force microscopy
    Lee, S. I.
    Hong, S. H.
    Lee, J. M.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2008, 57 (01) : 563 - 566
  • [34] Stochastic noise in atomic force microscopy
    Labuda, Aleksander
    Lysy, Martin
    Paul, William
    Miyahara, Yoichi
    Gruetter, Peter
    Bennewitz, Roland
    Sutton, Mark
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [35] Numerical verification of the hydrodynamic reconstruction method for contact resonance atomic force microscopy
    Shihab, Rafiul
    Tung, Ryan C.
    AIP ADVANCES, 2018, 8 (08):
  • [36] Polymer Nanostructured Components Machined Directly by the Atomic Force Microscopy Scratching Method
    Yan, Yong Da
    Gao, Da Wei
    Hu, Zhen Jiang
    Sen Zhao, Xue
    Yan, Jiu Chun
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2012, 13 (02) : 269 - 273
  • [37] Atom Manipulation Using Atomic Force Microscopy at Room Temperature
    Sugimoto, Y.
    Abe, M.
    Morita, S.
    IMAGING AND MANIPULATION OF ADSORBATES USING DYNAMIC FORCE MICROSCOPY, 2015, : 49 - 62
  • [38] Energetic Material/Polymer Interaction Studied by Atomic Force Microscopy
    Oxley, Jimmie C.
    Smith, James L.
    Kagan, Gerald L.
    Zhang, Guang
    Swanson, Devon S.
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2016, 41 (04) : 623 - 628
  • [39] Interaction Stress Measurement Using Atomic Force Microscopy: A Stepwise Discretization Method
    Rahmat, Meysam
    Hubert, Pascal
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (35) : 15029 - 15035
  • [40] Measuring Viscoelasticity of Soft Samples Using Atomic Force Microscopy
    Tripathy, S.
    Berger, E. J.
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2009, 131 (09):