Daniell method for power spectral density estimation in atomic force microscopy

被引:6
|
作者
Labuda, Aleksander [1 ]
机构
[1] Asylum Res Oxford Instruments Co, Santa Barbara, CA 93117 USA
关键词
FREQUENCY-RESPONSE; VISCOUS FLUIDS; CALIBRATION; RECONSTRUCTION; INTERFEROMETER; CANTILEVERS; SURFACE; NOISE;
D O I
10.1063/1.4943292
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An alternative method for power spectral density (PSD) estimation-the Daniell method-is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion-the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Effect of contact stiffness on wedge calibration of lateral force in atomic force microscopy
    Wang, Fei
    Zhao, Xuezeng
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (04)
  • [22] Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy
    Amano, Ken-ichi
    Liang, Yunfeng
    Miyazawa, Keisuke
    Kobayashi, Kazuya
    Hashimoto, Kota
    Fukami, Kazuhiro
    Nishi, Naoya
    Sakka, Tetsuo
    Onishi, Hiroshi
    Fukuma, Takeshi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (23) : 15534 - 15544
  • [23] Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function
    Tung, Ryan C.
    Killgore, Jason P.
    Hurley, Donna C.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (22)
  • [24] Atomic Force Microscopy of Calcite Surface
    廖立兵
    马喆生
    施倪承
    Chinese Science Bulletin, 1993, (24) : 2058 - 2061
  • [25] Quantum state atomic force microscopy
    Passian, Ali
    Siopsis, George
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [26] Adaptive Scanning in Atomic Force Microscopy
    Zhang, Dongdong
    Qian, Xiaoping
    ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7, 2009, : 2372 - 2377
  • [27] Material discrimination and mixture ratio estimation in nanocomposites via harmonic atomic force microscopy
    Zhang, Weijie
    Chen, Yuhang
    Xia, Xicheng
    Chu, Jiaru
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2017, 8 : 2771 - 2780
  • [28] Real time estimation of equivalent cantilever parameters in tapping mode atomic force microscopy
    Agarwal, Pranav
    Salapaka, Murti V.
    APPLIED PHYSICS LETTERS, 2009, 95 (08)
  • [29] Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy
    Schulz, Fabian
    Ritala, Juha
    Krejci, Ondrej
    Seitsonen, Ari Paavo
    Foster, Adam S.
    Liljeroth, Peter
    ACS NANO, 2018, 12 (06) : 5274 - 5283
  • [30] Atomic force microscopy with qPlus sensors
    Giessibl, Franz J.
    MRS BULLETIN, 2024, 49 (05) : 492 - 502