Daniell method for power spectral density estimation in atomic force microscopy

被引:6
|
作者
Labuda, Aleksander [1 ]
机构
[1] Asylum Res Oxford Instruments Co, Santa Barbara, CA 93117 USA
关键词
FREQUENCY-RESPONSE; VISCOUS FLUIDS; CALIBRATION; RECONSTRUCTION; INTERFEROMETER; CANTILEVERS; SURFACE; NOISE;
D O I
10.1063/1.4943292
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An alternative method for power spectral density (PSD) estimation-the Daniell method-is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion-the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Median method for robust and accurate power spectral density estimation of stochastic oscillators
    Labuda, Aleksander
    Walters, Dara
    Lysy, Martin
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2025, 96 (03)
  • [2] Lateral Force Calibration in Atomic Force Microscopy: Minireview
    Wang, Huabin
    SCIENCE OF ADVANCED MATERIALS, 2017, 9 (01) : 56 - 64
  • [3] Corrected direct force balance method for atomic force microscopy lateral force calibration
    Asay, David B.
    Hsiao, Erik
    Kim, Seong H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (06)
  • [4] Contact Resonance Atomic Force Microscopy Using Long, Massive Tips
    Jaquez-Moreno, Tony
    Aureli, Matteo
    Tung, Ryan C.
    SENSORS, 2019, 19 (22)
  • [5] Optimization method of photolithography process by means of Atomic Force Microscopy
    Sierakowski, Andrzej
    Janus, Pawel
    Kopiec, Daniel
    Nieradka, Konrad
    Domanski, Krzysztof
    Grabiec, Piotr
    Gotszalk, Teodor
    28TH EUROPEAN MASK AND LITHOGRAPHY CONFERENCE, 2012, 8352
  • [6] Optimization and calibration of atomic force microscopy sensitivity in terms of tip-sample interactions in high-order dynamic atomic force microscopy
    Liu, Yu
    Guo, Qiuquan
    Nie, Heng-Yong
    Lau, W. M.
    Yang, Jun
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (12)
  • [7] Atomic force microscopy with optical heterodyne detection method
    Kim, MS
    Manzardo, O
    Dändliker, R
    Herzig, HP
    Aeschimann, L
    Staufer, U
    Vettiger, P
    Lee, JH
    IEEE/LEOS Optical MEMs 2005: International Conference on Optical MEMs and Their Applications, 2005, : 173 - 174
  • [8] Atomic Force Microscopy Nanoindentation Method on Collagen Fibrils
    Kontomaris, Stylianos Vasileios
    Stylianou, Andreas
    Malamou, Anna
    MATERIALS, 2022, 15 (07)
  • [9] High resolution atomic force microscopy with an active piezoelectric microcantilever
    Nasrabadi, Hazhir Mahmoodi
    Mahdavi, Mohammad
    Soleymaniha, Mohammadreza
    Moheimani, S. O. Reza
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (07)
  • [10] Measurement of the size of spherical nanoparticles by means of atomic force microscopy
    Couteau, O.
    Roebben, G.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2011, 22 (06)