Characteristics of proteinaceous additives in stabilizing enzymes during freeze-thawing and -drying

被引:14
作者
Shimizu, Takanori [1 ]
Korehisa, Tamayo [1 ]
Imanaka, Hiroyuki [1 ]
Ishida, Naoyuki [1 ]
Imamura, Koreyoshi [1 ]
机构
[1] Okayama Univ, Grad Sch Nat Sci & Technol, Div Chem & Biochem, Kita Ku, Okayama, Japan
关键词
freeze thawing; freeze drying; proteinaceous additive; enzymes; stabilization; STRESS-SPECIFIC STABILIZATION; LACTATE-DEHYDROGENASE; INDUCED DENATURATION; SUBZERO TEMPERATURES; AMORPHOUS SUCROSE; COLD DENATURATION; WATER SORPTION; SUGAR; PHARMACEUTICALS; AGGREGATION;
D O I
10.1080/09168451.2016.1274637
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-stabilizing characteristics of sixteen proteins during freeze-thawing and freeze-drying were investigated. Five enzymes, each with different instabilities against freezing and dehydration, were employed as the protein to be stabilized. Proteinaceous additives generally resulted in greater enzyme stabilization during freeze-thawing than sugars while the degree of stabilization for basic lysozyme and protamine were inferior to that of neutral and acidic proteins. Freeze-drying-induced inactivation of enzyme was also reduced by the presence of a proteinaceous additive, the extent of which was lower than that for a sugar. In both freeze thawing and freeze drying, the enzymes stabilization by the proteinaceous additive increased with increasing additive concentration. The enhancement of enzyme inactivation caused by pH change was also reduced in the presence of proteinaceous additives. The combined use of a sugar such as sucrose and dextran tended to increase the stabilizing effect of the proteinaceous additive.
引用
收藏
页码:687 / 697
页数:11
相关论文
共 60 条
[1]   Counteracting effects of thiocyanate and sucrose on chymotrypsinogen secondary structure and aggregation during freezing, drying, and rehydration [J].
Allison, SD ;
Dong, AC ;
Carpenter, JF .
BIOPHYSICAL JOURNAL, 1996, 71 (04) :2022-2032
[2]   Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding [J].
Allison, SD ;
Chang, B ;
Randolph, TW ;
Carpenter, JF .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1999, 365 (02) :289-298
[3]   Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state [J].
Anchordoquy, TJ ;
Carpenter, JF .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1996, 332 (02) :231-238
[4]  
[Anonymous], 1990, SEIKAGAKU DATA BOOK
[5]   STABILIZATION OF PROTEIN-STRUCTURE BY SUGARS [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1982, 21 (25) :6536-6544
[6]   THE STABILIZATION OF PROTEINS BY OSMOLYTES [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOPHYSICAL JOURNAL, 1985, 47 (03) :411-414
[7]   FACTORS AFFECTING SHORT-TERM AND LONG-TERM STABILITIES OF PROTEINS [J].
ARAKAWA, T ;
PRESTRELSKI, SJ ;
KENNEY, WC ;
CARPENTER, JF .
ADVANCED DRUG DELIVERY REVIEWS, 1993, 10 (01) :1-28
[8]   USE OF 2-HYDROXYPROPYL-BETA-CYCLODEXTRIN AS A SOLUBILIZING AND STABILIZING EXCIPIENT FOR PROTEIN DRUGS [J].
BREWSTER, ME ;
HORA, MS ;
SIMPKINS, JW ;
BODOR, N .
PHARMACEUTICAL RESEARCH, 1991, 8 (06) :792-795
[9]   MODES OF STABILIZATION OF A PROTEIN BY ORGANIC SOLUTES DURING DESICCATION [J].
CARPENTER, JF ;
CROWE, JH .
CRYOBIOLOGY, 1988, 25 (05) :459-470
[10]   SEPARATION OF FREEZING-INDUCED AND DRYING-INDUCED DENATURATION OF LYOPHILIZED PROTEINS USING STRESS-SPECIFIC STABILIZATION .1. ENZYME-ACTIVITY AND CALORIMETRIC STUDIES [J].
CARPENTER, JF ;
PRESTRELSKI, SJ ;
ARAKAWA, T .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 303 (02) :456-464