Experimental and theoretical study on propylene absorption by using PVDF hollow fiber membrane contactors with various membrane structures

被引:30
作者
Rajabzadeh, Saeid [1 ]
Teramoto, Masaaki [1 ]
Al-Marzouqi, Mohamed H. [2 ]
Kamio, Eiji [1 ]
Ohmukai, Yoshikage [1 ]
Maruyama, Tatsuo [1 ]
Matsuyama, Hideto [1 ]
机构
[1] Kobe Univ, Dept Sci & Chem Engn, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] UAE Univ, Dept Chem & Petr Engn, Al Ain, U Arab Emirates
关键词
Poly(vinylidene fluoride) (PVDF); Hollow fiber membrane contactor; Propylene absorption; Silver nitrate; Numerical simulation; MASS-TRANSFER; SEPARATION; DIFFUSION; SOLUBILITY;
D O I
10.1016/j.memsci.2009.09.022
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Five kinds of asymmetric poly(vinylidene fluoride) (PVDF) hollow fiber membranes with considerable different porosities at the inner and outer surfaces of the membrane were prepared via thermally induced phase separation (TIPS) method and applied for propylene absorption as gas-liquid membrane contactors. A commercial microporous poly(tetrafluoroethylene) (PTFE) hollow fiber membrane was also used as a highly hydrophobic membrane. Experiments on the absorption of pure propylene into silver nitrate solutions were performed and the effects of membrane structure, inner diameter, silver nitrate concentration and absorbent liquid flow rate were investigated at 298 K. PVDF membranes prepared by using nitrogen as bore fluid had lower inner surface porosity than the membranes prepared with solvent as bore fluid. Except the membrane with a skin layer at the outer surface, propylene absorption flux was inversely proportional to the inner diameter of the hollow fiber membrane, and propylene absorption rate per fiber was almost the same. Propylene flux increased with increasing the silver nitrate concentration and also with increasing the absorbent flow rate. A mathematical model for pure propylene absorption in a membrane contactor, which assumes that the membrane resistance is negligibly small and the total membrane area is effective for gas absorption, was proposed to simulate propylene absorption rates. Experimental results were satisfactorily simulated by the model except for the membrane having a skin layer. The model also suggested that propylene is absorbed in silver nitrate solutions accompanied by the instantaneous reversible reaction. This paper may be the first experimental and theoretical study on propylene absorption in membrane contactors. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 97
页数:12
相关论文
共 34 条
[11]   OLEFIN PARAFFIN SEPARATION TECHNOLOGY - A REVIEW [J].
ELDRIDGE, RB .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1993, 32 (10) :2208-2212
[12]   Hollow fiber membrane contactors [J].
Gabelman, A ;
Hwang, ST .
JOURNAL OF MEMBRANE SCIENCE, 1999, 159 (1-2) :61-106
[13]  
Jacob M., 1949, HEAT TRANSFER, V1
[14]  
Keller G.E., 1992, Separation and Purification Technology, P59
[15]   MICROPOROUS HOLLOW-FIBER MEMBRANE MODULES AS GAS-LIQUID CONTACTORS .2. MASS-TRANSFER WITH CHEMICAL-REACTION [J].
KREULEN, H ;
SMOLDERS, CA ;
VERSTEEG, GF ;
VANSWAAIJ, WPM .
JOURNAL OF MEMBRANE SCIENCE, 1993, 78 (03) :217-238
[16]   Review Of CO2 absorption using chemical solvents in hollow fiber membrane contactors [J].
Li, JL ;
Chen, BH .
SEPARATION AND PURIFICATION TECHNOLOGY, 2005, 41 (02) :109-122
[17]   EFFECT OF MEMBRANE-PROPERTIES OF MICROPOROUS HOLLOW-FIBER GAS-LIQUID CONTACTOR ON CO2 REMOVAL FROM THERMAL POWER-PLANT FLUE-GAS [J].
MATSUMOTO, H ;
KITAMURA, H ;
KAMATA, T ;
ISHIBASHI, M ;
OTA, H ;
AKUTSU, N .
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1995, 28 (01) :125-128
[19]   Composite hollow fiber gas-liquid membrane contactors for olefin/paraffin separation [J].
Nymeijer, DC ;
Visser, T ;
Assen, R ;
Wessling, M .
SEPARATION AND PURIFICATION TECHNOLOGY, 2004, 37 (03) :209-220
[20]   Analysis of the complexation reaction between Ag+ and ethylene [J].
Nymeijer, K ;
Visser, T ;
Brilman, W ;
Wessling, M .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (11) :2627-2635