Convolutional Neural Network Modelling for MODIS Land Surface Temperature Super-Resolution

被引:0
作者
Nguyen, Binh Minh [1 ]
Tian, Ganglin [1 ]
Vo, Minh-Triet [1 ]
Michel, Aurelie [2 ]
Corpetti, Thomas [3 ]
Granero-Belinchon, Carlos [1 ]
机构
[1] IMT Atlantique, UMR CNRS 6285, Math & Elect Engn Dept, F-29238 Brest, France
[2] Univ Toulouse, ONERA DOTA, F-31055 Toulouse, France
[3] CNRS, UMR LETG 6554, F-35043 Rennes, France
来源
2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022) | 2022年
关键词
Super-Resolution; CNN; U-Net; LST; MODIS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Nowadays, thermal infrared satellite remote sensors enable to extract very interesting information at large scale, in particular Land Surface Temperature (LST). However such data are limited in spatial and/or temporal resolutions which prevents from an analysis at fine scales. For example, MODIS satellite provides daily acquisitions with 1Km spatial resolutions which is not sufficient to deal with highly heterogeneous landscapes. Therefore, image super-resolution is a crucial task to better exploit MODIS LSTs. This issue is tackled in this paper. We introduce a deep learning-based algorithm, named Multi-residual U-Net, for super-resolution of MODIS LST single-images. Our proposed network is a modified version of U-Net architecture, which aims at super-resolving the input LST image from 1Km to 250m per pixel. The results show that our Multi-residual U-Net outperforms other state-of-the-art methods.
引用
收藏
页码:1806 / 1810
页数:5
相关论文
共 22 条
[1]   A vegetation index based technique for spatial sharpening of thermal imagery [J].
Agam, Nurit ;
Kustas, William P. ;
Anderson, Martha C. ;
Li, Fuqin ;
Neale, Christopher M. U. .
REMOTE SENSING OF ENVIRONMENT, 2007, 107 (04) :545-558
[2]   Super-Resolving Multiresolution Images With Band-Independent Geometry of Multispectral Pixels [J].
Brodu, Nicolas .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08) :4610-4617
[3]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[4]   Reconstruction of MODIS land-surface temperature in a flat terrain and fragmented landscape [J].
Fan, Xiao-Mei ;
Liu, Hong-Guang ;
Liu, Gao-Huan ;
Li, Shou-Bo .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (23) :7857-7877
[5]   Multi-Resolution Study of Thermal Unmixing Techniques over Madrid Urban Area: Case Study of TRISHNA Mission [J].
Granero-Belinchon, Carlos ;
Michel, Aurelie ;
Lagouarde, Jean-Pierre ;
Sobrino, Jose A. ;
Briottet, Xavier .
REMOTE SENSING, 2019, 11 (10)
[6]  
He K, 2016, C COMPUTER VISION PA, P770
[7]   Perceptual Losses for Real-Time Style Transfer and Super-Resolution [J].
Johnson, Justin ;
Alahi, Alexandre ;
Li Fei-Fei .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :694-711
[8]   Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution [J].
Kilibarda, Milan ;
Hengl, Tomislav ;
Heuvelink, Gerard B. M. ;
Graeler, Benedikt ;
Pebesma, Edzer ;
Tadic, Melita Percec ;
Bajat, Branislav .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (05) :2294-2313
[9]  
Kim J, 2016, IEEE CONF COMPUT
[10]  
Lagouarde J, 2000, LAND SURFACE TEMPERA, V01