Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene

被引:413
作者
Zhu, Wenjuan [1 ]
Perebeinos, Vasili [1 ]
Freitag, Marcus [1 ]
Avouris, Phaedon [1 ]
机构
[1] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 23期
关键词
carrier density; electronic density of states; graphene; Hall mobility; multilayers; surface phonons; SUSPENDED GRAPHENE; ELECTRONICS; TRANSPORT; TRANSISTOR; GRAPHITE;
D O I
10.1103/PhysRevB.80.235402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The carrier density and temperature dependence of the Hall mobility in monolayer, bilayer, and trilayer graphene has been systematically studied. We found that as the carrier density increases, the mobility decreases for monolayer graphene, while it increases for bilayer/trilayer graphene. This can be explained by the different density of states in monolayer and bilayer/trilayer graphenes. In monolayer, the mobility also decreases with increasing temperature primarily due to substrate surface polar phonon scattering. In bilayer/trilayer graphene, on the other hand, the mobility increases with temperature because the electric field of the substrate surface polar phonons is effectively screened by the additional graphene layer(s) and the mobility is dominated by Coulomb scattering. We also find that the temperature dependence of the Hall coefficient in monolayer, bilayer, and trilayer graphene can be explained by the formation of electron and hole puddles in graphene. This model also explains the temperature dependence of the minimum conductance of monolayer, bilayer, and trilayer graphene. The electrostatic potential variations across the different graphene samples are extracted.
引用
收藏
页数:8
相关论文
共 44 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]  
AKTURK A, 2008, P INT C SIM SEM PROC, P173
[3]   Magnetic domain-wall logic [J].
Allwood, DA ;
Xiong, G ;
Faulkner, CC ;
Atkinson, D ;
Petit, D ;
Cowburn, RP .
SCIENCE, 2005, 309 (5741) :1688-1692
[4]   Screening effect and impurity scattering in monolayer graphene [J].
Ando, Tsuneya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (07)
[5]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[6]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[7]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[8]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[9]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[10]   Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir I. .
PHYSICAL REVIEW LETTERS, 2006, 97 (22)