Optimal Design of an Hourglass in-Fiber Air Fabry-Perot Microcavity-Towards Spectral Characteristics and Strain Sensing Technology

被引:3
作者
Wang, Qi [1 ,2 ]
Yan, Dongchao [1 ]
Cui, Binbin [1 ]
Guo, Zixuan [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
fiber Fabry-Perot interferometer; in-fiber air microcavity; spectral characteristics; strain; high fringe contrast; high resolution; MACH-ZEHNDER INTERFEROMETER; SENSOR;
D O I
10.3390/s17061282
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
An hourglass in-fiber air microcavity Fabry-Perot interferometer is proposed in this paper, and its second reflecting surface of in-fiber microcavity is designed to be a concave reflector with the best curvature radius in order to improve the spectral characteristics. Experimental results proved that the extinction ratio of Fabry-Perot interferometer with cavity length of 60 mu m and concave reflector radius of 60 mu mis higher than for a rectangular Fabry-Perot interferometer with cavity length of 60 mu m (14 dB: 11 dB). Theory and numerical simulation results show that the strain sensitivity of sensor can be improved by reducing the microcavity wall thickness and microcavity diameter, and when the in-fiber microcavity length is 40 mu m, the microcavity wall thickness is 10 mu m, the microcavity diameter is 20 mu m, and the curvature radius of reflective surface II is 50 mu m, the interference fringe contrast of is greater than 0.97, an Axial-pull sensitivity of 20.46 nm/N and resolution of 1 mN can be achieved in the range of 0-1 N axial tension. The results show that the performance of hourglass in-fiber microcavity interferometer is far superior to that of the traditional Fabry-Perot interferometer.
引用
收藏
页数:12
相关论文
共 32 条
[1]   Fiber-tip bubble-structure microcavity sensor [J].
Chen, D. ;
Luo, S. ;
Ma, X. ;
Jiang, X. ;
Feng, G. ;
Yang, J. .
ADVANCED SENSOR SYSTEMS AND APPLICATIONS VI, 2014, 9274
[2]   In-line short cavity Fabry-Perot strain sensor for quasi distributed measurement utilizing standard OTDR [J].
Cibula, Edvard ;
Donlagic, Denis .
OPTICS EXPRESS, 2007, 15 (14) :8719-8730
[3]   Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement [J].
Duan, De-Wen ;
Rao, Yun-Jiang ;
Hou, Yu-Song ;
Zhu, Tao .
APPLIED OPTICS, 2012, 51 (08) :1033-1036
[4]   An inverted microcontact printing method on topographically structured polystyrene chips for arrayed micro-3-D culturing of single cells [J].
Dusseiller, MR ;
Schlaepfer, D ;
Koch, M ;
Kroschewski, R ;
Textor, M .
BIOMATERIALS, 2005, 26 (29) :5917-5925
[5]   Towards the control of highly sensitive Fabry-Perot strain sensor based on hollow-core ring photonic crystal fiber [J].
Ferreira, Marta S. ;
Bierlich, Joerg ;
Kobelke, Jens ;
Schuster, Kay ;
Santos, Jose L. ;
Frazao, Orlando .
OPTICS EXPRESS, 2012, 20 (20) :21946-21952
[6]   Fiber-cavity-based optomechanical device [J].
Flowers-Jacobs, N. E. ;
Hoch, S. W. ;
Sankey, J. C. ;
Kashkanova, A. ;
Jayich, A. M. ;
Deutsch, C. ;
Reichel, J. ;
Harris, J. G. E. .
APPLIED PHYSICS LETTERS, 2012, 101 (22)
[7]   A small mode volume tunable microcavity: Development and characterization [J].
Greuter, Lukas ;
Starosielec, Sebastian ;
Najer, Daniel ;
Ludwig, Arne ;
Duempelmann, Luc ;
Rohner, Dominik ;
Warburton, Richard J. .
APPLIED PHYSICS LETTERS, 2014, 105 (12)
[8]   A fiber Fabry-Perot cavity with high finesse [J].
Hunger, D. ;
Steinmetz, T. ;
Colombe, Y. ;
Deutsch, C. ;
Haensch, T. W. ;
Reichel, J. .
NEW JOURNAL OF PHYSICS, 2010, 12
[9]   Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions [J].
Kinet, Damien ;
Megret, Patrice ;
Goossen, Keith W. ;
Qiu, Liang ;
Heider, Dirk ;
Caucheteur, Christophe .
SENSORS, 2014, 14 (04) :7394-7419
[10]   Fabrication of a fiber-based microcavity with spherical concave fiber tips [J].
Kunert, D. M. B. ;
Meyrath, T. P. ;
Giessen, H. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 98 (04) :707-710