First Order Approach to Lp Estimates for the Stokes Operator on Lipschitz Domains

被引:0
作者
McIntosh, Alan [1 ]
Monniaux, Sylvie [2 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 2601, Australia
[2] Aix Marseille Univ, CNRS, Ctr Marseille, I2M UMR 7373, F-13453 Marseille, France
来源
MATHEMATICAL ANALYSIS, PROBABILITY AND APPLICATIONS - PLENARY LECTURES | 2016年 / 177卷
基金
澳大利亚研究理事会;
关键词
Hodge-Dirac operator; Lipschitz domains; Stokes operator; First order approach; Hodge boundary conditions; HODGE DECOMPOSITIONS; FUNCTIONAL CALCULI; NONSMOOTH;
D O I
10.1007/978-3-319-41945-9_3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns Hodge-Dirac operators D-H = d + delta acting in L-p(Omega, Lambda) where Omega is a bounded open subset of R-n satisfying some kind of Lipschitz condition, Lambda is the exterior algebra of R-n, d is the exterior derivative acting on the de Rham complex of differential forms on Omega, and delta is the interior derivative with tangential boundary conditions. In L-2(Omega, Lambda), d(') = delta and D-H is self-adjoint, thus having bounded resolvent {(I + itD(H))}({t is an element of R}) as well as a bounded functional calculus in L-2(Omega, Lambda). We investigate the range of values p(H) < p < p(H) about p = 2 for which DH has bounded resolvents and a bounded holomorphic functional calculus in L-p(Omega, Lambda).
引用
收藏
页码:55 / 75
页数:21
相关论文
共 18 条
  • [1] ALBRECHT D., 1996, INSTRUCTIONAL WORKSH, V34, P77
  • [2] Auscher P, 1997, INDIANA U MATH J, V46, P375
  • [3] Hardy spaces of differential forms on Riemannian manifolds
    Auscher, Pascal
    McIntosh, Alan
    Russ, Emmanuel
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) : 192 - 248
  • [4] Quadratic estimates and functional calculi of perturbed Dirac operators
    Axelsson, A
    Keith, S
    McIntosh, A
    [J]. INVENTIONES MATHEMATICAE, 2006, 163 (03) : 455 - 497
  • [5] Axelsson A, 2004, TRENDS MATH, P3
  • [6] Blunck S, 2003, REV MAT IBEROAM, V19, P919
  • [7] On Bogovskii and regularized Poincare integral operators for de Rham complexes on Lipschitz domains
    Costabel, Martin
    McIntosh, Alan
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) : 297 - 320
  • [8] Banach space operators with a bounded H infinity functional calculus
    Cowling, M
    Doust, I
    McIntosh, A
    Yagi, A
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 : 51 - 89
  • [9] Frey D., J ANAL MATH
  • [10] RIESZ TRANSFORMS ASSOCIATED WITH THE HODGE LAPLACIAN IN LIPSCHITZ SUBDOMAINS OF RIEMANNIAN MANIFOLDS
    Hofmann, Steve
    Mitrea, Marius
    Monniaux, Sylvie
    [J]. ANNALES DE L INSTITUT FOURIER, 2011, 61 (04) : 1323 - 1349