Visual SLAM with RGB-D Cameras

被引:0
|
作者
Jin, Qiongyao [1 ]
Liu, Yungang [1 ]
Man, Yongchao [1 ]
Li, Fengzhong [1 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
来源
PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC) | 2019年
基金
中国国家自然科学基金;
关键词
SLAM; RGB-D; 3D Vision; Visual Odometry; SIMULTANEOUS LOCALIZATION; ODOMETRY; ROBUST; SCALE;
D O I
10.23919/chicc.2019.8865270
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on visual SLAM with RGB-D cameras (abbreviated as RGB-D SLAM), which has been an actively studied issue in the robotics community since RGB-D cameras can obtain depth information of environments simply. Firstly, two types of RGB-D cameras are introduced according to the principle of depth measurement. Secondly, the typical RGB-D SLAM algorithm framework is normally divided into four parts: visual odometry, optimization, loop closing and mapping. Thirdly, a series of landmark achievements on algorithm, open source libraries and tools, and performance evaluation of RGB-D SLAM are summarized. Finally, the advantages and the disadvantages, as well as the development trends of RGB-D SLAM are discussed.
引用
收藏
页码:4072 / 4077
页数:6
相关论文
共 50 条
  • [1] Dense Visual SLAM for RGB-D Cameras
    Kerl, Christian
    Sturm, Juergen
    Cremers, Daniel
    2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 2100 - 2106
  • [2] Visual SLAM using Multiple RGB-D Cameras
    Yang, Shaowu
    Yi, Xiaodong
    Wang, Zhiyuan
    Wang, Yanzhen
    Yang, Xuejun
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 1389 - 1395
  • [3] DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D Cameras
    Teed, Zachary
    Deng, Jia
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] Online Depth Calibration for RGB-D Cameras using Visual SLAM
    Quenzel, Jan
    Rosu, Radu Alexandru
    Houben, Sebastian
    Behnke, Sven
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2227 - 2234
  • [5] Dense RGB-D SLAM with Multiple Cameras
    Meng, Xinrui
    Gao, Wei
    Hu, Zhanyi
    SENSORS, 2018, 18 (07)
  • [6] A Robust Keyframe-Based Visual SLAM for RGB-D Cameras in Challenging Scenarios
    Lin, Xi
    Huang, Yewei
    Sun, Dingyi
    Lin, Tzu-Yuan
    Englot, Brendan
    Eustice, Ryan M.
    Ghaffari, Maani
    IEEE ACCESS, 2023, 11 : 97239 - 97249
  • [7] A Visual-Inertial SLAM Method Based on Rolling Shutter RGB-D Cameras
    Cao L.
    Xiao X.
    Jiqiren/Robot, 2021, 43 (02): : 193 - 202
  • [8] 3D Visual SLAM for an Assistive Robot in Indoor Environments Using RGB-D Cameras
    Meng, Lili
    de Silva, Clarence W.
    Zhang, Jie
    2014 PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2014), 2014, : 32 - 37
  • [9] A Real Time Visual SLAM For RGB-D Cameras Based on Chamfer Distance and Occupancy Grid
    Dib, Abdallah
    Beaufort, Nicolas
    Charpillet, Francois
    2014 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2014, : 652 - 657
  • [10] DNA-SLAM: Dense Noise Aware SLAM for ToF RGB-D Cameras
    Wasenmueller, Oliver
    Ansari, Mohammad Dawud
    Stricker, Didier
    COMPUTER VISION - ACCV 2016 WORKSHOPS, PT I, 2017, 10116 : 613 - 629