Operators on Partial Inner Product Spaces: Towards a Spectral Analysis

被引:4
作者
Antoine, Jean-Pierre [1 ]
Trapani, Camillo [2 ]
机构
[1] Catholic Univ Louvain, Inst Rech Math & Phys, B-1348 Louvain La Neuve, Belgium
[2] Univ Palermo, Dipartimento Matemat & Informat, I-90123 Palermo, Italy
关键词
Partial inner product spaces; lattices of Hilbert spaces; spectral properties of symmetric operators; resolvent; frame multipliers; QUANTUM-MECHANICS; FORMALISM; FRAMES;
D O I
10.1007/s00009-014-0499-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Lattice of Hilbert spaces V (J) and a symmetric operator A in V (J) , in the sense of partial inner product spaces, we define a generalized resolvent for A and study the corresponding spectral properties. In particular, we examine, with help of the KLMN theorem, the question of generalized eigenvalues associated to points of the continuous (Hilbertian) spectrum. We give some examples, including so-called frame multipliers.
引用
收藏
页码:323 / 351
页数:29
相关论文
共 25 条
[1]  
Akhiezer NI., 1993, Theory of Linear Operators in Hilbert Space
[2]  
ALI ST, 1991, ANN I H POINCARE-PHY, V55, P829
[3]  
[Anonymous], GEN FUNCTIONS
[4]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[5]  
[Anonymous], 2012, GRADUATE TEXTS MATH
[6]  
[Anonymous], 1969, Grundlehren Math. Wiss.
[7]   FRAMES, SEMI-FRAMES, AND HILBERT SCALES [J].
Antoine, J. -P. ;
Balazs, P. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (7-9) :736-769
[8]   The Partial Inner Product Space Method: A Quick Overview [J].
Antoine, Jean-Pierre ;
Trapani, Camillo .
ADVANCES IN MATHEMATICAL PHYSICS, 2010, 2010
[9]   Frames and semi-frames [J].
Antoine, Jean-Pierre ;
Balazs, Peter .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (20)
[10]  
Antoine JP, 2009, LECT NOTES MATH, V1986, P1, DOI 10.1007/978-3-642-05136-4