Wigner surmise for Hermitian and non-Hermitian chiral random matrices

被引:18
作者
Akemann, G. [1 ,2 ]
Bittner, E. [3 ,4 ]
Phillips, M. J. [1 ,2 ]
Shifrin, L. [1 ,2 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[2] Brunel Univ, BURSt Res Ctr, Uxbridge UB8 3PH, Middx, England
[3] Univ Leipzig, Inst Theoret Phys, D-04009 Leipzig, Germany
[4] Univ Leipzig, Ctr Theoret Sci NTZ, D-04009 Leipzig, Germany
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
chemical potential; chiral symmetries; eigenvalues and eigenfunctions; gauge field theory; lattice field theory; matrix algebra; quantum chromodynamics; random processes; QCD DIRAC OPERATOR; DISTRIBUTIONS; SPECTRUM;
D O I
10.1103/PhysRevE.80.065201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large-N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eigenvalues in the orthogonal and symplectic classes and at intermediate non-Hermiticity for the unitary and symplectic classes. Such individual Dirac eigenvalue distributions are a useful tool in lattice gauge theory, and we illustrate this by showing that our results can describe data from two-color quantum chromodynamics simulations with chemical potential in the symplectic class.
引用
收藏
页数:4
相关论文
共 29 条
  • [1] Superstatistical generalizations of Wishart-Laguerre ensembles of random matrices
    Abul-Magd, A. Y.
    Akemann, G.
    Vivo, P.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (17)
  • [2] Individual complex dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential
    Akemann, G.
    Bloch, J.
    Shifrin, L.
    Wettig, T.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (03)
  • [3] The complex Laguerre symplectic ensemble of non-Hermitian matrices
    Akemann, G
    [J]. NUCLEAR PHYSICS B, 2005, 730 (03) : 253 - 299
  • [4] Unquenched QCD Dirac operator spectra at nonzero baryon chemical potential
    Akemann, G
    Osborn, JC
    Splittorff, K
    Verbaarschot, JJM
    [J]. NUCLEAR PHYSICS B, 2005, 712 (1-2) : 287 - 324
  • [5] Distributions of Dirac operator eigenvalues
    Akemann, G
    Damgaard, PH
    [J]. PHYSICS LETTERS B, 2004, 583 (1-2) : 199 - 206
  • [6] Gap probabilities in non-Hermitian random matrix theory
    Akemann, G.
    Phillips, M. J.
    Shifrin, L.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (06)
  • [7] Unquenched complex dirac spectra at nonzero chemical potential: Two-color QCD lattice data versus matrix model
    Akemann, Gernot
    Bittner, Elmar
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (22)
  • [8] Microscopic universality with dynamical fermions
    Berbenni-Bitsch, ME
    Meyer, S
    Wettig, T
    [J]. PHYSICAL REVIEW D, 1998, 58 (07)
  • [9] Overlap Dirac operator at nonzero chemical potential and random matrix theory
    Bloch, Jacques
    Wettig, Tilo
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (01)
  • [10] Finite-temperature chiral condensate and low-lying Dirac eigenvalues in quenched SU(2) lattice gauge theory
    Buividovich, P. V.
    Luschevskaya, E. V.
    Polikarpov, M. I.
    [J]. PHYSICAL REVIEW D, 2008, 78 (07):