chemical potential;
chiral symmetries;
eigenvalues and eigenfunctions;
gauge field theory;
lattice field theory;
matrix algebra;
quantum chromodynamics;
random processes;
QCD DIRAC OPERATOR;
DISTRIBUTIONS;
SPECTRUM;
D O I:
10.1103/PhysRevE.80.065201
中图分类号:
O35 [流体力学];
O53 [等离子体物理学];
学科分类号:
070204 ;
080103 ;
080704 ;
摘要:
We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large-N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eigenvalues in the orthogonal and symplectic classes and at intermediate non-Hermiticity for the unitary and symplectic classes. Such individual Dirac eigenvalue distributions are a useful tool in lattice gauge theory, and we illustrate this by showing that our results can describe data from two-color quantum chromodynamics simulations with chemical potential in the symplectic class.