共 50 条
Recurrence relations for exceptional Hermite polynomials
被引:40
|作者:
Gomez-Ullate, D.
[1
,2
]
Kasman, A.
[3
]
Kuijlaars, A. B. J.
[4
]
Milson, R.
[5
]
机构:
[1] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
[3] Coll Charleston, Dept Math, Charleston, SC 29424 USA
[4] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
[5] Dalhousie Univ, Dept Math, Halifax, NS, Canada
基金:
加拿大自然科学与工程研究理事会;
关键词:
Exceptional orthogonal polynomials;
Bispectral Darboux transformations;
BISPECTRAL DARBOUX TRANSFORMATIONS;
ORTHOGONAL POLYNOMIALS;
OPERATORS;
CHARLIER;
D O I:
10.1016/j.jat.2015.12.003
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The bispectral anti-isomorphism is applied to differential operators involving elements of the stabilizer ring to produce explicit formulas for all difference operators having any of the Hermite exceptional orthogonal polynomials as eigenfunctions with eigenvalues that are polynomials in x. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文