Line Integral Alternating Minimization Algorithm for Dual-Energy X-Ray CT Image Reconstruction

被引:13
作者
Chen, Yaqi [1 ]
O'Sullivan, Joseph A. [1 ]
Politte, David G. [2 ]
Evans, Joshua D. [3 ]
Han, Dong [3 ]
Whiting, Bruce R. [4 ]
Williamson, Jeffrey F. [3 ]
机构
[1] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA
[2] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, Elect Radiol Lab, St Louis, MO 63110 USA
[3] Virginia Commonwealth Univ, Dept Radiat Oncol, Richmond, VA 23220 USA
[4] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
Alternating minimization algorithm; dual-energy; iterative deblurring algorithm; line integral; X-ray CT; STATISTICAL RECONSTRUCTION; ITERATIVE RECONSTRUCTION; TOMOGRAPHY;
D O I
10.1109/TMI.2015.2490658
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a new algorithm, called line integral alternating minimization (LIAM), for dual-energy X-ray CT image reconstruction. Instead of obtaining component images by minimizing the discrepancy between the data and the mean estimates, LIAM allows for a tunable discrepancy between the basis material projections and the basis sinograms. A parameter is introduced that controls the size of this discrepancy, and with this parameter the new algorithm can continuously go from a two-step approach to the joint estimation approach. LIAM alternates between iteratively updating the line integrals of the component images and reconstruction of the component images using an image iterative deblurring algorithm. An edge-preserving penalty function can be incorporated in the iterative deblurring step to decrease the roughness in component images. Images from both simulated and experimentally acquired sinograms from a clinical scanner were reconstructed by LIAM while varying the regularization parameters to identify good choices. The results from the dual-energy alternating minimization algorithm applied to the same data were used for comparison. Using a small fraction of the computation time of dual-energy alternating minimization, LIAM achieves better accuracy of the component images in the presence of Poisson noise for simulated data reconstruction and achieves the same level of accuracy for real data reconstruction.
引用
收藏
页码:685 / 698
页数:14
相关论文
共 54 条
[1]   Fast Image Recovery Using Variable Splitting and Constrained Optimization [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) :2345-2356
[2]   ENERGY-SELECTIVE RECONSTRUCTIONS IN X-RAY COMPUTERIZED TOMOGRAPHY [J].
ALVAREZ, RE ;
MACOVSKI, A .
PHYSICS IN MEDICINE AND BIOLOGY, 1976, 21 (05) :733-744
[3]  
[Anonymous], 1975, REP TASK GROUP REF M
[4]   Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and recommendations for clinical implementation [J].
Beaulieu, Luc ;
Tedgren, Asa Carlsson ;
Carrier, Jean-Francois ;
Davis, Stephen D. ;
Mourtada, Firas ;
Rivard, Mark J. ;
Thomson, Rowan M. ;
Verhaegen, Frank ;
Wareing, Todd A. ;
Williamson, Jeffrey F. .
MEDICAL PHYSICS, 2012, 39 (10) :6208-6236
[5]   Iterative reconstruction methods in X-ray CT [J].
Beister, Marcel ;
Kolditz, Daniel ;
Kalender, Willi A. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2012, 28 (02) :94-108
[6]  
Benac J., 2005, ALTERNATING MINIMIZA
[7]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[8]  
Chen Y., 2014, THESIS WASHINGTON U
[9]   Robust analysis of multiplexed SERS microscopy of Ag nanocubes using an alternating minimization algorithm [J].
Chen, Yaqi ;
Moran, Christine H. ;
Tan, Zhao ;
Wooten, A. Lake ;
O'Sullivan, Joseph A. .
JOURNAL OF RAMAN SPECTROSCOPY, 2013, 44 (05) :703-709