Characterizing Uncertain Site-Specific Trend Function by Sparse Bayesian Learning

被引:89
作者
Ching, Jianye [1 ]
Phoon, Kok-Kwang [2 ]
机构
[1] Natl Taiwan Univ, Dept Civil Engn, 1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan
[2] Natl Univ Singapore, Dept Civil & Environm Engn, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
关键词
Geotechnical engineering; Statistical uncertainty; Trend; Site characterization; Spatial variability; ANNEX D RELIABILITY; SELECTION; MODEL; MODULUS;
D O I
10.1061/(ASCE)EM.1943-7889.0001240
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper addresses the statistical uncertainties associated with the estimation of a depth-dependent trend function and spatial variation about the trend function using limited site-specific geotechnical data. Specifically, the statistical uncertainties associated with the following elements are considered: (1)the functional form (shape) of the trend function; (2)the parameters of the trend function (e.g.,intercept and gradient); and (3)the random field parameters describing spatial variation about the trend function, namely standard deviation (sigma) and scale of fluctuation (). The problem is resolved with a two-step Bayesian framework. In Step 1, a set of suitable basis functions that parameterize the trend function is selected using sparse Bayesian learning. In Step 2, an advanced Markov chain Monte Carlo method is adopted for the Bayesian analysis. The two-step approach is shown to be consistent in the well-defined sense that the resulting 95% Bayesian confidence interval (or region) contains the actual trend (or actual sigma and ) with a chance that is close to 0.95. Inconsistency can occur when the spatial variability has a large sigma or a large relative to data record length. (C) 2017 American Society of Civil Engineers.
引用
收藏
页数:14
相关论文
共 35 条
[1]   Model selection using response measurements: Bayesian probabilistic approach [J].
Beck, JL ;
Yuen, KV .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 2004, 130 (02) :192-203
[2]   Transitional Markov Chain Monte Carlo: Observations and Improvements [J].
Betz, Wolfgang ;
Papaioannou, Iason ;
Straub, Daniel .
JOURNAL OF ENGINEERING MECHANICS, 2016, 142 (05)
[3]   An introduction to compressive sampling: A sensing/sampling paradigm that goes against the common knowledge in data acquisition [J].
Candes, Emmanuel J. ;
Wakin, Michael B. .
IEEE Signal Processing Magazine, 2008, 25 (02) :21-30
[4]   Bayesian Model Comparison and Characterization of Undrained Shear Strength [J].
Cao, Zijun ;
Wang, Yu .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2014, 140 (06)
[5]   Transitional markov chain monte carlo method for Bayesian model updating, model class selection, and model averaging [J].
Ching, Jianye ;
Chen, Yi-Chu .
JOURNAL OF ENGINEERING MECHANICS, 2007, 133 (07) :816-832
[6]   Impact of Statistical Uncertainty on Geotechnical Reliability Estimation [J].
Ching, Jianye ;
Phoon, Kok Kwang ;
Wu, Shih Hsuan .
JOURNAL OF ENGINEERING MECHANICS, 2016, 142 (06)
[7]   Application of the transitional Markov chain Monte Carlo algorithm to probabilistic site characterization [J].
Ching, Jianye ;
Wang, Jiun-Shiang .
ENGINEERING GEOLOGY, 2016, 203 :151-167
[8]   Statistical characterization of random field parameters using frequentist and Bayesian approaches [J].
Ching, Jianye ;
Wu, Shih-Shuan ;
Phoon, Kok-Kwang .
CANADIAN GEOTECHNICAL JOURNAL, 2016, 53 (02) :285-298
[9]   Cone penetration test (CPT)-based stratigraphic profiling using the wavelet transform modulus maxima method [J].
Ching, Jianye ;
Wang, Jiun-Shiang ;
Juang, C. Hsein ;
Ku, Chih-Sheng .
CANADIAN GEOTECHNICAL JOURNAL, 2015, 52 (12) :1993-2007
[10]   Estimation for stochastic soil models [J].
Fenton, GA .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 1999, 125 (06) :470-485