Blow-up of Solutions of Nonlinear Heat Equation with Hypoelliptic Operators on Graded Lie Groups

被引:3
作者
Bekbolat, Bayan [1 ,2 ,3 ]
Kassymov, Aidyn [1 ,2 ,3 ]
Tokmagambetov, Niyaz [1 ,2 ,3 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, 71 Al Farabi Ave, Alma Ata, Kazakhstan
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
关键词
Rockland operator; Hypoelliptic operator; Nonlinear heat equation; A graded Lie group; Blow-up; Fujita exponent; EVOLUTION-EQUATIONS; ROCKLAND OPERATORS; NONEXISTENCE;
D O I
10.1007/s11785-019-00940-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show blow-up of solutions of the nonlinear heat equation with the Rockland operators on the graded Lie groups. In addition, we give the necessary conditions for the existence of local or global solutions of the nonlinear heat equation with hypoelliptic operators on Heisenberg groups.
引用
收藏
页码:3347 / 3357
页数:11
相关论文
共 20 条
[1]  
Ahmad B., 2015, Electron. J. Differ. Equ., V2015, P1
[2]  
El Hamidi A., 2004, Abstract and Applied Analysis, V2004, P155
[3]  
Fischer V., 2014, ARXIV14116950
[4]  
Fischer V, 2016, QUANTIZATION NILPOTE
[5]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[6]  
Galaktionov VA, 2014, ADV NONLINEAR STUD, V14, P1
[7]   A note on nonexistence of global solutions to a nonlinear integral equation [J].
Guedda, M ;
Kirane, M .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1999, 6 (04) :491-497
[8]   New blow-up results for nonlinear boundary value problems in exterior domains [J].
Jleli, Mohamed ;
Samet, Bessem .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 178 :348-365
[9]   NONEXISTENCE RESULTS FOR A CLASS OF EVOLUTION EQUATIONS IN THE HEISENBERG GROUP [J].
Jleli, Mohamed ;
Kirane, Mokhtar ;
Samet, Bessem .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) :717-734
[10]   Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives [J].
Kirane, M ;
Laskri, Y ;
Tatar, NE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) :488-501