Martin Boundary of a Fine Domain and a Fatou-Naim-Doob Theorem for Finely Superharmonic Functions

被引:2
作者
El Kadiri, Mohamed [1 ]
Fuglede, Bent [2 ]
机构
[1] Univ Mohammed 5, Fac Sci, Dept Math, BP 1014, Rabat, Morocco
[2] Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
关键词
Martin boundary; Integral representation; Riesz-Martin kernel; Finely superharmonic function; Finely harmonic function; INTEGRAL-REPRESENTATION; RIESZ-DECOMPOSITION;
D O I
10.1007/s11118-015-9495-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the Martin compactification (u) over bar of a fine domain U in R (n) (n = 2) and the Riesz-Martin kernel K on U x (u) over bar . We obtain the integral representation of finely superharmonic fonctions >= 0 on U in terms of K and establish the Fatou-Naim-Doob theorem in this setting.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 30 条
  • [1] Aikawa H, 2012, CRM PROC & LECT NOTE, V55, P235
  • [2] Alfsen E.M., 2001, ERGEBNISSE MATH, V57
  • [3] ANCONA A, 1984, LECT NOTES MATH, V1096, P34
  • [4] [Anonymous], 1972, Potential Theory on Harmonic Spaces
  • [5] ARMITAGE DH, 2001, SPRINGER MG MATH, P1, DOI 10.1007/978-1-4471-0233-5
  • [6] On the tightness of capacities associated with sub-Markovian resolvents
    Beznea, L
    Boboc, N
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 : 899 - 907
  • [7] Boboc N., 1985, REV ROUMAINE MATH PU, V30, P1
  • [8] Boboc N., 1981, LECT NOTES MATH, V853
  • [9] DELLACHERIE C, 1987, PROBABILITES POTENTI, pCH12
  • [10] Doob J. L., 1984, Classical Potential Theory and its Probabilistic Counterpart, V262