Codimension One Threshold Manifold for the Critical gKdV Equation

被引:23
作者
Martel, Yvan [1 ]
Merle, Frank [2 ,3 ]
Nakanishi, Kenji [4 ]
Raphael, Pierre [5 ]
机构
[1] Ecole Polytech, CMLS, CNRS, UMR7640, F-91128 Palaiseau, France
[2] Univ Cergy Pontoise, F-95302 Cergy Pontoise, France
[3] Inst Hautes Etud Sci, CNRS, AGM, UMR8088, F-95302 Cergy Pontoise, France
[4] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[5] Univ Nice Sophia Antipolis, Lab JA Dieudonne, CNRS, UMR7351, F-06108 Nice 02, France
关键词
BLOW-UP SOLUTIONS; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER; STABLE MANIFOLDS; SCATTERING; INSTABILITY; STABILITY; DYNAMICS; TIME;
D O I
10.1007/s00220-015-2509-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct the "threshold manifold" near the soliton for the mass critical gKdV equation, completing results obtained in Martel et al. (Acta Math 212:59-140, 2014, J Math Eur Soc 2015). In a neighborhood of the soliton, this C (1) manifold of codimension one separates solutions blowing up in finite time and solutions in the "exit regime". On the manifold, solutions are global in time and converge locally to a soliton. In particular, the soliton behavior is strongly unstable by blowup.
引用
收藏
页码:1075 / 1106
页数:32
相关论文
共 50 条
  • [41] LOSIK CLASSES FOR CODIMENSION-ONE FOLIATIONS
    Bazaikin, Yaroslav, V
    Galaev, Anton S.
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2022, 21 (04) : 1391 - 1419
  • [42] Codimension one and codimension two bifurcations in a discrete Kolmogorov type predator-prey model
    Yousef, A. M.
    Algelany, Ahmed M.
    Elsadany, A. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 428
  • [43] On the sharp scattering threshold for the mass-energydouble critical nonlinear Schrödinger equation via doubletrack profile decomposition
    Luo, Yongming
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2024, 41 (01): : 187 - 255
  • [44] Asymptotic simplification for solutions of the energy critical nonlinear wave equation
    Kenig, Carlos E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (01)
  • [45] A semi-linear energy critical wave equation with an application
    Shen, Ruipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (11) : 6437 - 6484
  • [46] A note on the Hs-critical inhomogeneous nonlinear Schrodinger equation
    An, JinMyong
    Kim, JinMyong
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2023, 42 (3-4): : 403 - 433
  • [47] Solutions of the focusing nonradial critical wave equation with the compactness property
    Duyckaerts, Thomas
    Kenig, Carlos
    Merle, Frank
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 15 : 731 - 808
  • [48] Codimension one foliations of degree three on projective spaces
    da Costa, Raphael Constant
    Lizarbe, Ruben
    Pereira, Jorge Vitorio
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 174
  • [49] Almost Sure Scattering for the One Dimensional Nonlinear Schrodinger Equation
    Burq, Nicolas
    Thomann, Laurent
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 296 (1480)
  • [50] Linear Pullback Components of the Space of Codimension One Foliations
    Ferrer, V
    Vainsencher, I
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (02): : 391 - 403