Codimension One Threshold Manifold for the Critical gKdV Equation

被引:23
作者
Martel, Yvan [1 ]
Merle, Frank [2 ,3 ]
Nakanishi, Kenji [4 ]
Raphael, Pierre [5 ]
机构
[1] Ecole Polytech, CMLS, CNRS, UMR7640, F-91128 Palaiseau, France
[2] Univ Cergy Pontoise, F-95302 Cergy Pontoise, France
[3] Inst Hautes Etud Sci, CNRS, AGM, UMR8088, F-95302 Cergy Pontoise, France
[4] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[5] Univ Nice Sophia Antipolis, Lab JA Dieudonne, CNRS, UMR7351, F-06108 Nice 02, France
关键词
BLOW-UP SOLUTIONS; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER; STABLE MANIFOLDS; SCATTERING; INSTABILITY; STABILITY; DYNAMICS; TIME;
D O I
10.1007/s00220-015-2509-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct the "threshold manifold" near the soliton for the mass critical gKdV equation, completing results obtained in Martel et al. (Acta Math 212:59-140, 2014, J Math Eur Soc 2015). In a neighborhood of the soliton, this C (1) manifold of codimension one separates solutions blowing up in finite time and solutions in the "exit regime". On the manifold, solutions are global in time and converge locally to a soliton. In particular, the soliton behavior is strongly unstable by blowup.
引用
收藏
页码:1075 / 1106
页数:32
相关论文
共 50 条
  • [31] SOLITON RESOLUTION ALONG A SEQUENCE OF TIMES FOR THE FOCUSING ENERGY CRITICAL WAVE EQUATION
    Duyckaerts, Thomas
    Jia, Hao
    Kenig, Carlos
    Merle, Frank
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (04) : 798 - 862
  • [32] Well-posedness for energy-critical nonlinear Schrodinger equation on waveguide manifold
    Cheng, Xing
    Zhao, Zehua
    Zheng, Jiqiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (02)
  • [33] Below-threshold solutions of a focusing energy-critical heat equation in R4
    Gustafson, Stephen
    Roxanas, Dimitrios
    NONLINEAR DISPERSIVE WAVES AND FLUIDS, 2019, 725 : 149 - 162
  • [34] A stage-structured food chain model with stage dependent predation: Existence of codimension one and codimension two bifurcations
    Mukhopadhyay, B.
    Bhattacharyya, R.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) : 3056 - 3072
  • [35] Codimension-one and codimension-two bifurcations in a new discrete chaotic map based on gene regulatory network model
    Liu, Ming
    Meng, Fanwei
    Hu, Dongpo
    NONLINEAR DYNAMICS, 2022, 110 (02) : 1831 - 1865
  • [36] Threshold odd solutions to the nonlinear Schrödinger equation in one dimension
    Gustafson, Stephen
    Inui, Takahisa
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (04):
  • [37] Sharp threshold of blow-up and scattering for the fractional Hartree equation
    Guo, Qing
    Zhu, Shihui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) : 2802 - 2832
  • [38] Two-bubble dynamics for threshold solutions to the wave maps equation
    Jendrej, Jacek
    Lawrie, Andrew
    INVENTIONES MATHEMATICAE, 2018, 213 (03) : 1249 - 1325
  • [39] Threshold solutions for the nonlinear Schrodinger equation
    Campos, Luccas
    Farah, Luiz Gustavo
    Roudenko, Svetlana
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (05) : 1637 - 1708
  • [40] Sharp energy criteria of blow-up for the energy-critical Klein-Gordon equation
    Zhu, Shihui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 9