Codimension One Threshold Manifold for the Critical gKdV Equation

被引:24
作者
Martel, Yvan [1 ]
Merle, Frank [2 ,3 ]
Nakanishi, Kenji [4 ]
Raphael, Pierre [5 ]
机构
[1] Ecole Polytech, CMLS, CNRS, UMR7640, F-91128 Palaiseau, France
[2] Univ Cergy Pontoise, F-95302 Cergy Pontoise, France
[3] Inst Hautes Etud Sci, CNRS, AGM, UMR8088, F-95302 Cergy Pontoise, France
[4] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[5] Univ Nice Sophia Antipolis, Lab JA Dieudonne, CNRS, UMR7351, F-06108 Nice 02, France
关键词
BLOW-UP SOLUTIONS; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER; STABLE MANIFOLDS; SCATTERING; INSTABILITY; STABILITY; DYNAMICS; TIME;
D O I
10.1007/s00220-015-2509-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct the "threshold manifold" near the soliton for the mass critical gKdV equation, completing results obtained in Martel et al. (Acta Math 212:59-140, 2014, J Math Eur Soc 2015). In a neighborhood of the soliton, this C (1) manifold of codimension one separates solutions blowing up in finite time and solutions in the "exit regime". On the manifold, solutions are global in time and converge locally to a soliton. In particular, the soliton behavior is strongly unstable by blowup.
引用
收藏
页码:1075 / 1106
页数:32
相关论文
共 32 条
[11]   WELL-POSEDNESS AND SCATTERING RESULTS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION VIA THE CONTRACTION PRINCIPLE [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (04) :527-620
[12]   SMALL DATA SCATTERING AND SOLITON STABILITY IN (H) over dot-1/6 FOR THE QUARTIC KDV EQUATION [J].
Koch, Herbert ;
Marzuola, Jeremy L. .
ANALYSIS & PDE, 2012, 5 (01) :145-198
[13]   Stable manifolds for all monic supercritical focusing nonlinear Schrodinger equations in one dimension [J].
Krieger, J. ;
Schlag, W. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 19 (04) :815-920
[14]   Non-generic blow-up solutions for the critical focusing NLS in 1-D [J].
Krieger, J. ;
Schlag, W. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (01) :1-125
[15]   Center-stable manifold of the ground state in the energy space for the critical wave equation [J].
Krieger, Joachim ;
Nakanishi, Kenji ;
Schlag, Wilhelm .
MATHEMATISCHE ANNALEN, 2015, 361 (1-2) :1-50
[16]   Threshold Phenomenon for the Quintic Wave Equation in Three Dimensions [J].
Krieger, Joachim ;
Nakanishi, Kenji ;
Schlag, Wilhelm .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) :309-332
[17]   Blow up in finite time and dynamics of blow up solutions for the L2-critical generalized KdV equation [J].
Martel, Y ;
Merle, F .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (03) :617-664
[18]   Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation [J].
Martel, Y ;
Merle, F .
ANNALS OF MATHEMATICS, 2002, 155 (01) :235-280
[19]   Instability of solitons for the critical generalized Korteweg-de Vries equation [J].
Martel, Y ;
Merle, F .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (01) :74-123
[20]   A Liouville theorem for the critical generalized Korteweg-de Vries equation [J].
Martel, Y ;
Merle, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (04) :339-425