Codimension One Threshold Manifold for the Critical gKdV Equation

被引:23
作者
Martel, Yvan [1 ]
Merle, Frank [2 ,3 ]
Nakanishi, Kenji [4 ]
Raphael, Pierre [5 ]
机构
[1] Ecole Polytech, CMLS, CNRS, UMR7640, F-91128 Palaiseau, France
[2] Univ Cergy Pontoise, F-95302 Cergy Pontoise, France
[3] Inst Hautes Etud Sci, CNRS, AGM, UMR8088, F-95302 Cergy Pontoise, France
[4] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[5] Univ Nice Sophia Antipolis, Lab JA Dieudonne, CNRS, UMR7351, F-06108 Nice 02, France
关键词
BLOW-UP SOLUTIONS; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER; STABLE MANIFOLDS; SCATTERING; INSTABILITY; STABILITY; DYNAMICS; TIME;
D O I
10.1007/s00220-015-2509-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct the "threshold manifold" near the soliton for the mass critical gKdV equation, completing results obtained in Martel et al. (Acta Math 212:59-140, 2014, J Math Eur Soc 2015). In a neighborhood of the soliton, this C (1) manifold of codimension one separates solutions blowing up in finite time and solutions in the "exit regime". On the manifold, solutions are global in time and converge locally to a soliton. In particular, the soliton behavior is strongly unstable by blowup.
引用
收藏
页码:1075 / 1106
页数:32
相关论文
共 50 条
  • [1] Blow up for the critical gKdV equation III: exotic regimes
    Martel, Yvan
    Merle, Frank
    Raphael, Pierre
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2015, 14 (02) : 575 - 631
  • [2] CONSTRUCTION OF MULTIBUBBLE SOLUTIONS FOR THE CRITICAL GKDV EQUATION
    Combet, Vianney
    Martel, Yvan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) : 3715 - 3790
  • [3] Sharp asymptotics for the minimal mass blow up solution of the critical gKdV equation
    Combet, Vianney
    Martel, Yvan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (02): : 20 - 103
  • [4] The threshold conjecture for the energy critical hyperbolic Yang Mills equation
    Oh, Sung-Jin
    Tataru, Daniel
    ANNALS OF MATHEMATICS, 2021, 194 (02) : 393 - 473
  • [5] Blow up for the critical gKdV equation. II: Minimal mass dynamics
    Martel, Yvan
    Merle, Frank
    Raphael, Pierre
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (08) : 1855 - 1925
  • [6] Center-stable manifold of the ground state in the energy space for the critical wave equation
    Krieger, Joachim
    Nakanishi, Kenji
    Schlag, Wilhelm
    MATHEMATISCHE ANNALEN, 2015, 361 (1-2) : 1 - 50
  • [7] Scattering threshold for the focusing Choquard equation
    Saanouni, Tarek
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (06):
  • [8] Dynamics of radial threshold solutions for generalized energy-critical Hartree equation
    Li, Xuemei
    Liu, Chenxi
    Tang, Xingdong
    Xu, Guixiang
    FORUM MATHEMATICUM, 2025,
  • [9] Gevrey regularity of the periodic gKdV equation
    Hannah, Heather
    Himonas, A. Alexandrou
    Petronilho, Gerson
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (05) : 2581 - 2600
  • [10] Inelastic interaction of nearly equal solitons for the quartic gKdV equation
    Martel, Yvan
    Merle, Frank
    INVENTIONES MATHEMATICAE, 2011, 183 (03) : 563 - 648