Codimension One Threshold Manifold for the Critical gKdV Equation

被引:24
作者
Martel, Yvan [1 ]
Merle, Frank [2 ,3 ]
Nakanishi, Kenji [4 ]
Raphael, Pierre [5 ]
机构
[1] Ecole Polytech, CMLS, CNRS, UMR7640, F-91128 Palaiseau, France
[2] Univ Cergy Pontoise, F-95302 Cergy Pontoise, France
[3] Inst Hautes Etud Sci, CNRS, AGM, UMR8088, F-95302 Cergy Pontoise, France
[4] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[5] Univ Nice Sophia Antipolis, Lab JA Dieudonne, CNRS, UMR7351, F-06108 Nice 02, France
关键词
BLOW-UP SOLUTIONS; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER; STABLE MANIFOLDS; SCATTERING; INSTABILITY; STABILITY; DYNAMICS; TIME;
D O I
10.1007/s00220-015-2509-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct the "threshold manifold" near the soliton for the mass critical gKdV equation, completing results obtained in Martel et al. (Acta Math 212:59-140, 2014, J Math Eur Soc 2015). In a neighborhood of the soliton, this C (1) manifold of codimension one separates solutions blowing up in finite time and solutions in the "exit regime". On the manifold, solutions are global in time and converge locally to a soliton. In particular, the soliton behavior is strongly unstable by blowup.
引用
收藏
页码:1075 / 1106
页数:32
相关论文
共 32 条
[1]  
Bates PW., 1989, DYNAMICS REPORTED, P1, DOI DOI 10.1007/978-3-322-96657-5_
[2]   A critical center-stable manifold for Schrodinger's equation in three dimensions [J].
Beceanu, Marius .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (04) :431-507
[3]   NEW ESTIMATES FOR A TIME-DEPENDENT SCHRODINGER EQUATION [J].
Beceanu, Marius .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (03) :417-477
[4]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[5]  
BOURGAIN J., 1997, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V25, P197
[6]   Threshold solutions for the focusing 3D cubic Schrodinger equation [J].
Duyckaerts, Thomas ;
Roudenko, Svetlana .
REVISTA MATEMATICA IBEROAMERICANA, 2010, 26 (01) :1-56
[7]  
Kato T., 1983, STUDIES APPL MATH S, V8, P93
[8]  
Kenig C.E., 2000, Contemp. Math., V263, P131
[9]   Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrodinger equation in the radial case [J].
Kenig, Carlos E. ;
Merle, Frank .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :645-675
[10]   Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation [J].
Kenig, Carlos E. ;
Merle, Frank .
ACTA MATHEMATICA, 2008, 201 (02) :147-212