Ultrasonic attenuation and microstructural evolution throughout tension-compression fatigue of a low-carbon steel

被引:24
作者
Ohtani, T.
Nishiyama, K.
Yoshikawa, S.
Ogi, H.
Hirao, M.
机构
[1] Ebara Res Co Ltd, Mat Lab, Fujisawa, Kanagawa 2518502, Japan
[2] Ebara Corp, High Pressure Pump Engn Dept, Tokyo 1448510, Japan
[3] Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2006年 / 442卷 / 1-2期
关键词
electromagnetic acoustic resonance; low-carbon steel; fatigue damage; dislocation damping;
D O I
10.1016/j.msea.2006.02.226
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have studied the microstructural evolution in a wrought low-carbon steel (ASTM-AI05), containing 0.21 mass% C and subjected to tension-compression cyclic loading, through in situ monitoring of the attenuation and velocity of a surface shear-wave with the electromagnetic acoustic resonance (EMAR) technique. This technique is a combination of the resonant technique and a non-contacting electromagnetic acoustic transducer (EMAT). The EMAT operates with a magnetostrictive mechanism and it is the key to establishing a non-contacting monitoring of microstructural change in a material's surface region with high sensitivity. The attenuation coefficient is sensitive to the accumulated fatigue damage, showing two peaks around 2% and 90% of life. This novel phenomenon is interpreted in terms of dislocation mobility change and dislocation rearrangement. Transmission electron microscope (TEM) observation has supported this view. This technique has a potential to assess damage and predict the fatigue life of steels. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:466 / 470
页数:5
相关论文
共 50 条
  • [41] Measurement of Stress-strain Curve in the Low-carbon Steel Compression Experiment by Considering the Stand Stretch
    Yuan Miaomiao
    Zhang Jiping
    Wang Chao
    Li Xiangmei
    Wu Jianglong
    ISTM/2009: 8TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, 2009, : 2146 - 2149
  • [42] A study on wire and arc additive manufacturing of low-carbon steel components: process stability, microstructural and mechanical properties
    Van Thao Le
    Dinh Si Mai
    Quang Huy Hoang
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (09)
  • [43] A study on wire and arc additive manufacturing of low-carbon steel components: process stability, microstructural and mechanical properties
    Van Thao Le
    Dinh Si Mai
    Quang Huy Hoang
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [44] Microstructural Analysis and Hardening Mechanism of High-Strength Low-Carbon Weathering Steel: Effect of Coiling Temperature
    Dai, Bowen
    Guo, Shuo
    Liu, Chenxuan
    He, Jianzhong
    Liu, Zhouli
    Yang, Feng
    Zhou, Leyu
    Jiang, Bo
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [45] Influence of microstructures on non-propagating behavior of fatigue crack in notched specimens of low-carbon steel
    Kitano, T
    Tagawa, T
    Aihara, S
    Chapetti, MD
    Miyata, T
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1997, 83 (06): : 401 - 406
  • [46] Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment
    Yamabe, Junichiro
    Yoshikawa, Michio
    Matsunaga, Hisao
    Matsuoka, Saburo
    INTERNATIONAL JOURNAL OF FATIGUE, 2017, 102 : 202 - 213
  • [47] Low-Cycle Fatigue of the Weld Metal of a Low-Carbon Steel Welded Joint after High-Temperature Action
    S. A. Nikulin
    S. O. Rogachev
    V. A. Belov
    N. V. Shplis
    M. Yu. Zadorozhnyi
    Russian Metallurgy (Metally), 2023, 2023 : 1501 - 1509
  • [48] Low-Cycle Fatigue of the Weld Metal of a Low-Carbon Steel Welded Joint after High-Temperature Action
    Nikulin, S. A.
    Rogachev, S. O.
    Belov, V. A.
    Shplis, N. V.
    Zadorozhnyi, M. Yu.
    RUSSIAN METALLURGY, 2023, 2023 (10): : 1501 - 1509
  • [49] Peculiar temperature dependence of hydrogen-enhanced fatigue crack growth of low-carbon steel in gaseous hydrogen
    Matsuoka, Saburo
    Takakuwa, Osamu
    Okazaki, Saburo
    Yoshikawa, Michio
    Yamabe, Junichiro
    Matsunaga, Hisao
    SCRIPTA MATERIALIA, 2018, 154 : 101 - 105
  • [50] Tensile and fatigue properties of ultrafine-grained low-carbon steel processed by equal channel angular pressing
    Pang, J. C.
    Yang, M. X.
    Yang, G.
    Wu, S. D.
    Li, S. X.
    Zhang, Z. F.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 553 : 157 - 163