In this work we present an upwind-based high resolution scheme using flux limiters. Based on the direction of flow we choose the smoothness parameter in such a way that it leads to a truly upwind scheme without losing total variation diminishing (TVD) property for hyperbolic linear systems where characteristic values can be of either sign. Here we present and justify the choice of smoothness parameters. The numerical flux function of a high resolution scheme is constructed using wave speed splitting so that it results into a scheme that truly respects the physical hyperbolicity property. Bounds are given for limiter functions to satisfy TVD property. The proposed scheme is extended for non-linear problems by using the framework of relaxation system that converts a non-linear conservation law into a system of linear convection equations with a non-linear source term. The characteristic speed of relaxation system is chosen locally on three point stencil of grid. This obtained relaxation system is solved using composite scheme technique, i.e. using a combination of proposed scheme with the conservative non-standard finite difference scheme. Presented numerical results show hi-her resolution near discontinuity without introducing spurious oscillations. Copyright (C) 2008 John Wiley & Sons, Ltd.