Intrinsic Representation of Hyperspectral Imagery for Unsupervised Feature Extraction

被引:20
作者
Xu, Linlin [1 ]
Wong, Alexander [1 ]
Li, Fan [1 ]
Clausi, David A. [1 ]
机构
[1] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 02期
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Hyperspectral image representation; intrinsic representation; representational learning; spectral unmixing; unsupervised feature extraction; DIMENSIONALITY REDUCTION; COMPONENT ANALYSIS; CLASSIFICATION; ALGORITHM;
D O I
10.1109/TGRS.2015.2474132
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Unsupervised feature extraction from hyperspectral images (HSIs) relies on efficient data representation. However, classical data representation techniques, e.g., principal component analysis and independent component analysis, do not reflect the intrinsic characteristics of HSI, and as such, they are less efficient for producing discriminative features. To address this issue, we have developed an intrinsic representation (IR) approach to support HSI classification. Based on the linear spectral mixture model, the IR approach explains the underlying physical factors that are responsible for generating HSI. Moreover, it addresses other important characteristics of HSI, i.e., the noise variance heterogeneity effect in the spectral domain and the spatial correlation effect in image domain. The IR model is solved iteratively by alternating the estimation of IR coefficients given IR bases and the update of IR bases given the coefficients. The resulting IR coefficients are discriminative, compact, and noise resistant, thereby constituting powerful features for improved HSI classification. The experiments on both simulated and real HSI demonstrate that the features extracted by the IR model are more capable of boosting the classification performance than the other referenced techniques.
引用
收藏
页码:1118 / 1130
页数:13
相关论文
共 35 条
[1]  
[Anonymous], 1974, SOLVING LEAST SQUARE
[2]   Improved manifold coordinate representations of large-scale hyperspectral scenes [J].
Bachmann, Charles M. ;
Ainsworth, Thomas L. ;
Fusina, Robert A. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (10) :2786-2803
[3]   Bathymetric Retrieval From Hyperspectral Imagery Using Manifold Coordinate Representations [J].
Bachmann, Charles M. ;
Ainsworth, Thomas L. ;
Fusina, Robert A. ;
Montes, Marcos J. ;
Bowles, Jeffrey H. ;
Korwan, Daniel R. ;
Gillis, David B. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03) :884-897
[4]   Exploiting manifold geometry in hyperspectral imagery [J].
Bachmann, CM ;
Ainsworth, TL ;
Fusina, RA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :441-454
[5]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[6]  
Bro R, 1997, J CHEMOMETR, V11, P393, DOI 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.3.CO
[7]  
2-C
[8]   Improved nonlinear manifold learning for land cover classification via intelligent landmark selection [J].
Chen, Yangchi ;
Crawford, Melba M. ;
Ghosh, Joydeep .
2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, :545-+
[9]   Unsupervised target detection in hyperspectral images using projection pursuit [J].
Chiang, SS ;
Chang, CI ;
Ginsberg, IW .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07) :1380-1391
[10]   Dimension Reduction of Optical Remote Sensing Images via Minimum Change Rate Deviation Method [J].
Dianat, Rouhollah ;
Kasaei, Shohreh .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (01) :198-206