Multiscale channel attention network for infrared and visible image fusion

被引:9
作者
Zhu, Jiahui [1 ]
Dou, Qingyu [2 ]
Jian, Lihua [3 ]
Liu, Kai [4 ]
Hussain, Farhan [5 ]
Yang, Xiaomin [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp, Ctr Gerontol & Geriatr, Chengdu 610064, Sichuan, Peoples R China
[3] Zhengzhou Univ, Sch Informat Engn, Zhengzhou, Peoples R China
[4] Sichuan Univ, Coll Elect Engn, Chengdu, Peoples R China
[5] Natl Univ Sci & Technol NUST, Dept Comp & Software Engn, Islamabad, Pakistan
基金
中国国家自然科学基金;
关键词
channel attention; image fusion; imaging systems; visual saliency;
D O I
10.1002/cpe.6155
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Imaging systems with different imaging sensors are widely applied to surveillance field, military field, and medicine field. Particularly, infrared imaging sensors can acquire thermal radiations emitted by different objects but lack textural details, and visible imaging sensors can capture abundant textural information but suffer from loss of scene information under poor weather conditions. The fusion of infrared and visible images can synthesize a new image with complementary information of the source images. In this paper, we present a deep learning method with encoder-decoder architecture for infrared and visible image fusion. Firstly, multiscale channel attention blocks are introduced to extract features at different scales, which can preserve more meaningful information and enhance the important information. Secondly, we utilize the improved fusion strategy based on visual saliency to fuse feature maps. Lastly, the fusion result is restored via reconstruction network. In comparison with other state-of-the-art approaches, our experimental results achieve appealing performance on visual effects and objective assessments.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] MSFNet: MultiStage Fusion Network for infrared and visible image fusion
    Wang, Chenwu
    Wu, Junsheng
    Zhu, Zhixiang
    Chen, Hao
    NEUROCOMPUTING, 2022, 507 : 26 - 39
  • [32] SCGRFuse: An infrared and visible image fusion network based on spatial/channel attention mechanism and gradient aggregation residual dense blocks
    Wang, Yong
    Pu, Jianfei
    Miao, Duoqian
    Zhang, L.
    Zhang, Lulu
    Du, Xin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
  • [33] A saliency-based multiscale approach for infrared and visible image fusion
    Chen, Jun
    Wu, Kangle
    Cheng, Zhuo
    Luo, Linbo
    SIGNAL PROCESSING, 2021, 182
  • [34] MULTISCALE INFRARED AND VISIBLE IMAGE FUSION BASED ON PHASE CONGRUENCY AND SALIENCY
    Chen, Jun
    Wu, Kangle
    Luo, Linbo
    Chen, Xiaoqiang
    Gu, Yue
    Tian, Xin
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 224 - 227
  • [35] Infrared and visible image fusion based on multi-scale dense attention connection network
    Chen Y.
    Zhang J.
    Wang Z.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (18): : 2253 - 2266
  • [36] VCAFusion: An infrared and visible image fusion network with visual perception and cross-scale attention
    Zhang, Xiaodong
    Wang, Xinrui
    Gao, Shaoshu
    Zhu, Linghan
    Wang, Shuo
    DIGITAL SIGNAL PROCESSING, 2024, 151
  • [37] SCGAFusion: A skip-connecting group convolutional attention network for infrared and visible image fusion
    Zhu, Danchen
    Ma, Jingbin
    Li, Dong
    Wang, Xiaoming
    APPLIED SOFT COMPUTING, 2024, 163
  • [38] Infrared and visible image fusion based on edge-preserving and attention generative adversarial network
    Zhu Wen-Qing
    Tang Xin-Yi
    Zhang Rui
    Chen Xiao
    Miao Zhuang
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2021, 40 (05) : 696 - 708
  • [39] SimpliFusion: a simplified infrared and visible image fusion network
    Liu, Yong
    Li, Xingyuan
    Liu, Yong
    Zhong, Wei
    VISUAL COMPUTER, 2025, 41 (02) : 1335 - 1350
  • [40] Infrared and Visible Image Fusion via Decoupling Network
    Wang, Xue
    Guan, Zheng
    Yu, Shishuang
    Cao, Jinde
    Li, Ya
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71