Graphitic carbon nitride C6N9H3•HCl: Characterisation by UV and near-IR FT Raman spectroscopy

被引:79
作者
McMillan, Paul F. [1 ,2 ]
Lees, Victoria [1 ,2 ]
Quirico, Eric [3 ]
Montagnac, Gilles [4 ]
Sella, Andrea [1 ,2 ]
Reynard, Bruno [4 ]
Simon, Patrick [5 ,6 ]
Bailey, Edward [1 ,2 ]
Deifallah, Malek [1 ,2 ]
Cora, Furio [1 ,2 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] UCL, Mat Chem Ctr, London WC1H 0AJ, England
[3] Univ Grenoble 1, CNRS, INSU, Lab Planetol Grenoble,UMR 5109, F-38041 Grenoble 9, France
[4] Ecole Normale Super Lyon, Lab Sci Terre, F-69364 Lyon 7, France
[5] Univ Orleans, F-45067 Orleans 2, France
[6] CNRS, Ctr Rech Mat Haute Temp, F-45071 Orleans 2, France
基金
英国工程与自然科学研究理事会;
关键词
Graphitic carbon nitride; UV resonance Raman spectroscopy; FTIR spectroscopy; First principles calculations; DFT calculations; SOLID-STATE NMR; HIGH-PRESSURE; RELATIVE STABILITY; SYNTHETIC ROUTES; C3N4; SPECTRA; DIAMOND; FORM; CRYSTALLINE; TEMPERATURE;
D O I
10.1016/j.jssc.2009.07.030
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The graphitic layered compound C6N9H3 center dot HCl was prepared by reaction between melamine and cyanuric chloride under high pressure-high temperature conditions in a piston cylinder apparatus and characterised using SEM, powder X-ray diffraction, UV Raman and near-IR Fourier transform Raman spectroscopy with near-IR excitation. Theoretical calculations using density functional methods permitted evaluation of the mode of attachment of H atoms to nitrogen sites in the structure and a better understanding of the X-ray diffraction pattern. Broadening in the UV and near-IR FT Raman spectra indicate possible disordering of the void sites within the graphitic layers or it could be due to electron-phonon coupling effects. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2670 / 2677
页数:8
相关论文
共 52 条
[1]   On a new model of the graphitic form of C3N4 [J].
Alves, I ;
Demazeau, G ;
Tanguy, B ;
Weill, F .
SOLID STATE COMMUNICATIONS, 1999, 109 (11) :697-701
[2]   Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride [J].
Bojdys, Michael J. ;
Mueller, Jens-Oliver ;
Antonietti, Markus ;
Thomas, Arne .
CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (27) :8177-8182
[3]   CALCULATION OF BULK MODULI OF DIAMOND AND ZINCBLENDE SOLIDS [J].
COHEN, ML .
PHYSICAL REVIEW B, 1985, 32 (12) :7988-7991
[4]  
DEIFALLAH M, 2009, PHYS REV B UNPUB
[5]   Electronic and structural properties of two-dimensional carbon nitride graphenes [J].
Deifallah, Malek ;
McMillan, Paul F. ;
Cora, Furio .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (14) :5447-5453
[6]  
DEMAZEAU G, 1998, REV HIGH PRESSURE SC, V7, P1345
[7]   Boson peak and hybridization of acoustic modes with vibrations of nanometric heterogeneities in glasses [J].
Duval, E. ;
Mermet, A. ;
Saviot, L. .
PHYSICAL REVIEW B, 2007, 75 (02)
[8]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[9]   Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond [J].
Ferrari, AC ;
Robertson, J .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1824) :2477-2512
[10]   Resonant Raman spectra of amorphous carbon nitrides: the G peak dispersion [J].
Ferrari, AC ;
Rodil, SE ;
Robertson, J .
DIAMOND AND RELATED MATERIALS, 2003, 12 (3-7) :905-910