Higher Structures in Algebraic Quantum Field Theory LMS/EPSRC Durham Symposium on Higher Structures in M-Theory

被引:16
作者
Benini, Marco [1 ]
Schenkel, Alexander [2 ]
机构
[1] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
[2] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2019年 / 67卷 / 8-9期
关键词
algebraic quantum field theory; gauge theory; model categories; operads; stacks; YANG-MILLS FIELDS; HOMOTOPY-THEORY; RECTIFICATION; CATEGORIES; RESOLUTION; HOMOLOGY;
D O I
10.1002/prop.201910015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A brief overview of the recent developments of operadic and higher categorical techniques in algebraic quantum field theory is given. The relevance of such mathematical structures for the description of gauge theories is discussed.
引用
收藏
页数:24
相关论文
共 66 条
[1]  
[Anonymous], HDB ALGEBRAIC TOPOLO
[2]  
Atiyah M., 1989, Publ. Math. de l'IHES, V68, P175, DOI [DOI 10.1007/BF02698547, 10.1007/BF02698547]
[3]   Factorization homology of topological manifolds [J].
Ayala, David ;
Francis, John .
JOURNAL OF TOPOLOGY, 2015, 8 (04) :1045-1084
[4]  
Baer C., 2007, EUR MATH SOC ZURICH
[5]   Differential cohomology and locally covariant quantum field theory [J].
Becker, Christian ;
Schenkel, Alexander ;
Szabo, Richard J. .
REVIEWS IN MATHEMATICAL PHYSICS, 2017, 29 (01)
[6]   Abelian Duality on Globally Hyperbolic Spacetimes [J].
Becker, Christian ;
Benini, Marco ;
Schenkel, Alexander ;
Szabo, Richard J. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (01) :361-392
[7]  
Benini M., 170908657MATHPH
[8]  
Benini M, 2019, THEOR APPL CATEG, V34, P13
[9]   Homotopy theory of algebraic quantum field theories [J].
Benini, Marco ;
Schenkel, Alexander ;
Woike, Lukas .
LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) :1487-1532
[10]   Algebraic Quantum Field Theory on Spacetimes with Timelike Boundary [J].
Benini, Marco ;
Dappiaggi, Claudio ;
Schenkel, Alexander .
ANNALES HENRI POINCARE, 2018, 19 (08) :2401-2433