Synthesis and characterization of Ni-P-TiN nanocomposites fabricated by magnetic electrodeposition technology

被引:31
作者
Ma, Chunyang [1 ]
Guo, Xue [1 ]
Leang, Jonathan [2 ]
Xia, Fafeng [1 ,2 ]
机构
[1] Northeast Petr Univ, Sch Mech Sci & Engn, Daqing 163318, Peoples R China
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Ni-P-TiN nanocomposite; Magnetic electrodeposition; Heat treatment; Microhardness; Corrosion behavior; ELECTROLESS DEPOSITION; COMPOSITE COATINGS; HEAT-TREATMENT;
D O I
10.1016/j.ceramint.2016.03.187
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ni-P-TiN nanocomposites were successfully deposited onto 45 steel sheets. The microstructure, micro hardness and corrosion behavior of the nanocomposites were examined by transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Vickers microhardness meter, and electrochemical apparatus. TEM observations present that the average crystal dimensions of Ni (1 1 1) and TiN(1 1 1) in the Ni-P-TiN nanocomposite deposited at the magnetic intensity of 0.5 T are 0.244 nm and 0.211 nm, respectively. AFM and XRD results indicate that the average grain size for Ni and TiN in the as-plated Ni-P-TiN nanocomposite produced at a magnetic intensity of 0.5 T is approximately 81.4 nm and 39.5 nm, respectively. Microhardness test demonstrate that the composite after heat treatment at 500 degrees C for 10 min. has the highest average microhardness (similar to 918.6 HV). Electrochemical test results illustrate that the Ni-P-TiN nanocomposites heat-treated at 500 degrees C for 10 min has the most optimum corrosion resistance among all as-plated and heat-treated specimens. Published by Elsevier Ltd and Techna Group S.r.l.
引用
收藏
页码:10428 / 10432
页数:5
相关论文
共 15 条
[1]   Electrochemical studies on electroless ternary and quaternary Ni-P based alloys [J].
Balaraju, J. N. ;
Selvi, V. Ezhil ;
Grips, V. K. William ;
Rajam, K. S. .
ELECTROCHIMICA ACTA, 2006, 52 (03) :1064-1074
[2]   Study on microstructure and properties of electrodeposited Ni-W alloy coating with glycolic acid system [J].
Chang, L. M. ;
Wang, Z. T. ;
Shi, S. Y. ;
Liu, W. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (05) :1501-1504
[3]   Tribological properties of Ni-P-multi-walled carbon nanotubes electroless composite coating [J].
Chen, WX ;
Tu, JP ;
Xu, ZD ;
Chen, WL ;
Zhang, XB ;
Cheng, DH .
MATERIALS LETTERS, 2003, 57 (07) :1256-1260
[4]   Electroless deposition and characterization of Ni-P-WC composite alloys [J].
Hamid, Z. Abdel ;
El Badry, S. A. ;
Aal, A. Abdel .
SURFACE & COATINGS TECHNOLOGY, 2007, 201 (12) :5948-5953
[5]   Codeposition of micro- and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating [J].
Lee, Hong-Kee ;
Lee, Ho-Young ;
Jeon, Jun-Mi .
SURFACE & COATINGS TECHNOLOGY, 2007, 201 (08) :4711-4717
[6]   Effect of heat treatment on structures and corrosion characteristics of electroless Ni-P-SiC nanocomposite coatings [J].
Ma, Chunyang ;
Wu, Feifei ;
Ning, Yumei ;
Xia, Fafeng ;
Liu, Yongfa .
CERAMICS INTERNATIONAL, 2014, 40 (07) :9279-9284
[7]   The effect of electroless Ni-P coatings on the fatigue life of Al 7075-T6 fastener holes with symmetrical slits [J].
Rahmat, M. A. ;
Oskouei, R. H. ;
Ibrahim, R. N. ;
Raman, R. K. Singh .
INTERNATIONAL JOURNAL OF FATIGUE, 2013, 52 :30-38
[8]   Characteristics of electrocodeposited Ni-Co-SiC composite coating [J].
Sharma, Gajendra ;
Yadava, R. K. ;
Sharma, V. K. .
BULLETIN OF MATERIALS SCIENCE, 2006, 29 (05) :491-496
[9]   Electroless deposition of Ni-P composite coatings containing kaolin nanoparticles [J].
Srinivasan, K. N. ;
Thangavelu, P. R. .
TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 2012, 90 (02) :105-112
[10]   Preparation of Ni-W-SiO2 nanocomposite coating and evaluation of its hardness and corrosion resistance [J].
Wang, Yi ;
Zhou, Qiongyu ;
Li, Ke ;
Zhong, Qingdong ;
Quoc Binh Bui .
CERAMICS INTERNATIONAL, 2015, 41 (01) :79-84