Complex-Valued Symmetric Fractional Derivative on Time Scales

被引:0
作者
Sozbir, Bayram [1 ]
Altundag, Selma [1 ]
机构
[1] Sakarya Univ, Dept Math, Sakarya, Turkey
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2019年 / 58卷 / 04期
关键词
Fractional calculus; time scales; dynamic derivatives; symmetric fractional derivative; DIFFERENTIATION; INTEGRATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept of symmetric fractional (noninteger order) derivative for functions defined on an arbitrary nonempty subset of real numbers (i.e., on a time scale), denoted by f(lozenge alpha )(t). Then the basic properties of this new operator are examined, and some related theorems are proved. We also give several examples.
引用
收藏
页码:50 / 60
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 2011, LECT NOTES ELECT ENG
[2]  
Bastos N.R.O., 2011, Int. J. Math. Comput, V11, P1
[3]  
Bastos N. R. O., 2012, THESIS
[4]  
Bayour B., 2016, SPRINGER P MATH STAT, V164
[5]   Nonlinear Functional Boundary Value Problems for Conformable Fractional Dynamic Equations on Time Scales [J].
Bendouma, Bouharket ;
Hammoudi, Ahmed .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (02)
[6]   A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration [J].
Benkhettou, Nadia ;
Brito da Cruz, Artur M. C. ;
Torres, Delfim F. M. .
SIGNAL PROCESSING, 2015, 107 :230-237
[7]  
Bohner M, 2004, DYNAM SYST APPL, V13, P351
[8]  
Bohner M, 2005, DYNAM SYST APPL, V14, P579
[9]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications
[10]  
Bohner M., 2003, ADV DYNAMIC EQUATION, DOI DOI 10.1007/978-0-8176-8230-9