Computing Boolean Border Bases

被引:0
作者
Horacek, Jan [1 ]
Kreuzer, Martin [1 ]
Ekossono, Ange-Salome Messeng [1 ]
机构
[1] Univ Passau, Fac Informat & Math, D-94030 Passau, Germany
来源
PROCEEDINGS OF 2016 18TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC) | 2016年
关键词
D O I
10.1109/SYNASC.2016.70
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a 0-dimensional polynomial system in a polynomial ring over F-2 having only. F-2-rational solutions, we optimize the Border Basis Algorithm (BBA) for solving this system by introducing a Boolean BBA. This algorithm is further improved by optimizing the linear algebra steps. We discuss ways to combine it with SAT solvers, optimized methods for performing the combinatorial steps involved in the algorithm, and various approaches to implement the linear algebra steps. Based on our C++ implementation, we provide some timings to compare sparse and dense representations of the coefficient matrices and to Grobner basis methods.
引用
收藏
页码:465 / 472
页数:8
相关论文
共 50 条
[41]   Weak bases of Boolean co-clones [J].
Lagerkvist, Victor .
INFORMATION PROCESSING LETTERS, 2014, 114 (09) :462-468
[42]   NATURAL EQUATIONAL BASES FOR NEWMAN AND BOOLEAN ALGEBRAS [J].
SIOSON, FM .
COMPOSITIO MATHEMATICA, 1966, 17 (03) :299-&
[43]   Gröbner Bases for Boolean Function Minimization [J].
Nicolas Faroß ;
Simon Schwarz .
Mathematics in Computer Science, 19 (1)
[44]   Weak bases for Boolean relational clones revisited [J].
Behrisch, Mike .
2022 IEEE 52ND INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2022), 2022, :68-73
[45]   ALGORITHMS FOR WORKING WITH ROBDD AS WITH BASES OF BOOLEAN CONSTRAINTS [J].
Ignatiev, A. S. ;
Semenov, A. A. .
PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2010, 7 (01) :86-104
[46]   Exploring Boolean and Non-Boolean Computing with Spin Torque Devices [J].
Roy, Kaushik ;
Sharad, Mrigank ;
Fan, Deliang ;
Yogendra, Karthik .
2013 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2013, :576-580
[47]   An Algorithm for Computing Core of Boolean Game [J].
Wang B. ;
Liu J. .
Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2018, 55 (08) :1735-1750
[48]   Coded Computing for Secure Boolean Computations [J].
Yang, Chien-Sheng ;
Avestimehr, A. Salman .
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, 2021, 2 (01) :326-337
[49]   COMPUTING BOOLEAN FUNCTIONS ON ANONYMOUS NETWORKS [J].
KRANAKIS, E ;
KRIZANC, D ;
VANDENBERG, J .
LECTURE NOTES IN COMPUTER SCIENCE, 1990, 443 :254-267
[50]   COMPUTING BOOLEAN FUNCTIONS ON ANONYMOUS NETWORKS [J].
KRANAKIS, E ;
KRIZANC, D ;
VANDENBERG, J .
INFORMATION AND COMPUTATION, 1994, 114 (02) :214-236