Computing Boolean Border Bases

被引:0
|
作者
Horacek, Jan [1 ]
Kreuzer, Martin [1 ]
Ekossono, Ange-Salome Messeng [1 ]
机构
[1] Univ Passau, Fac Informat & Math, D-94030 Passau, Germany
来源
PROCEEDINGS OF 2016 18TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC) | 2016年
关键词
D O I
10.1109/SYNASC.2016.70
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a 0-dimensional polynomial system in a polynomial ring over F-2 having only. F-2-rational solutions, we optimize the Border Basis Algorithm (BBA) for solving this system by introducing a Boolean BBA. This algorithm is further improved by optimizing the linear algebra steps. We discuss ways to combine it with SAT solvers, optimized methods for performing the combinatorial steps involved in the algorithm, and various approaches to implement the linear algebra steps. Based on our C++ implementation, we provide some timings to compare sparse and dense representations of the coefficient matrices and to Grobner basis methods.
引用
收藏
页码:465 / 472
页数:8
相关论文
共 50 条
  • [31] On an infinite sequence of improving Boolean bases
    Cherukhin, DU
    DISCRETE APPLIED MATHEMATICS, 2001, 114 (1-3) : 95 - 108
  • [32] Parallel computation of boolean Grobner bases
    Sato, Y
    Suzuki, A
    PROCEEDINGS OF THE FOURTH ASIAN TECHNOLOGY CONFERENCE IN MATHEMATICS, 1999, : 265 - 274
  • [33] The Inclusion Structure of Boolean Weak Bases
    Lagerkvist, Victor
    Roy, Biman
    2019 IEEE 49TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL), 2019, : 31 - 36
  • [34] BOOLEAN GROBNER BASES AND THEIR MIMD IMPLEMENTATION
    SENECHAUD, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 584 : 101 - 114
  • [35] Computing preimages of Boolean networks
    Johannes Georg Klotz
    Martin Bossert
    Steffen Schober
    BMC Bioinformatics, 14
  • [36] Coded Computing for Boolean Functions
    Yang, Chien-Sheng
    Avestimehr, A. Salman
    PROCEEDINGS OF 2020 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2020), 2020, : 141 - 145
  • [37] Computing preimages of Boolean networks
    Klotz, Johannes Georg
    Bossert, Martin
    Schober, Steffen
    BMC BIOINFORMATICS, 2013, 14
  • [38] A POLYHEDRAL CHARACTERIZATION OF BORDER BASES
    Braun, Gabor
    Pokutta, Sebastian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (01) : 239 - 265
  • [39] Border bases for lattice ideals
    Boffi, Giandomenico
    Logar, Alessandro
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 79 : 43 - 56
  • [40] NATURAL EQUATIONAL BASES FOR NEWMAN AND BOOLEAN ALGEBRAS
    SIOSON, FM
    COMPOSITIO MATHEMATICA, 1966, 17 (03) : 299 - &