Computing Boolean Border Bases

被引:0
|
作者
Horacek, Jan [1 ]
Kreuzer, Martin [1 ]
Ekossono, Ange-Salome Messeng [1 ]
机构
[1] Univ Passau, Fac Informat & Math, D-94030 Passau, Germany
来源
PROCEEDINGS OF 2016 18TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC) | 2016年
关键词
D O I
10.1109/SYNASC.2016.70
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a 0-dimensional polynomial system in a polynomial ring over F-2 having only. F-2-rational solutions, we optimize the Border Basis Algorithm (BBA) for solving this system by introducing a Boolean BBA. This algorithm is further improved by optimizing the linear algebra steps. We discuss ways to combine it with SAT solvers, optimized methods for performing the combinatorial steps involved in the algorithm, and various approaches to implement the linear algebra steps. Based on our C++ implementation, we provide some timings to compare sparse and dense representations of the coefficient matrices and to Grobner basis methods.
引用
收藏
页码:465 / 472
页数:8
相关论文
共 50 条
  • [1] Computing border bases
    Kehrein, A
    Kreuzer, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 205 (02) : 279 - 295
  • [2] Computing Coupled Border Bases
    Hashemi, Amir
    Kreuzer, Martin
    Pourkhajouei, Samira
    MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (01) : 123 - 140
  • [3] Computing Coupled Border Bases
    Amir Hashemi
    Martin Kreuzer
    Samira Pourkhajouei
    Mathematics in Computer Science, 2020, 14 : 123 - 140
  • [4] Role of Involutive Criteria in Computing Boolean Grobner Bases
    Gerdt, V. P.
    Zinin, M. V.
    PROGRAMMING AND COMPUTER SOFTWARE, 2009, 35 (02) : 90 - 97
  • [5] Computing border bases using mutant strategies
    E. Ullah
    S. Abbas Khan
    Computational Mathematics and Mathematical Physics, 2014, 54 : 177 - 190
  • [6] Computing all border bases for ideals of points
    Hashemi, Amir
    Kreuzer, Martin
    Pourkhajouei, Samira
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (06)
  • [7] Computing border bases using mutant strategies
    Ullah, E.
    Abbas Khan, S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (01) : 177 - 190
  • [8] Role of involutive criteria in computing Boolean Gröbner bases
    V. P. Gerdt
    M. V. Zinin
    Programming and Computer Software, 2009, 35 : 90 - 97
  • [9] A pommaret division algorithm for computing grobner bases in boolean rings
    Gerdt, Vladimir P.
    Zinin, Mikhail V.
    Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, 2008,
  • [10] Computing border bases without using a term ordering
    Kaspar, Stefan
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2013, 54 (01): : 211 - 223