Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies

被引:174
作者
Dai, Hong-Ning [1 ]
Wang, Hao [2 ]
Xu, Guangquan [3 ]
Wan, Jiafu [4 ]
Imran, Muhammad [5 ]
机构
[1] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Macao, Peoples R China
[2] Norwegian Univ Sci & Technol Aalesund, Fac Engn & Nat Sci, Gjovik, Norway
[3] Tianjin Univ, Coll Intelligence & Comp, Tianjin Key Lab Adv Networking, Tianjin, Peoples R China
[4] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou, Guangdong, Peoples R China
[5] King Saud Univ, Coll Comp & Informat Sci, Riyadh, Saudi Arabia
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Smart manufacturing; data analytics; data mining; internet of things; FRAMEWORK; MACHINE; SYSTEMS; ALGORITHM; NETWORKS; SECURITY; PRIVACY; DESIGN;
D O I
10.1080/17517575.2019.1633689
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data analytics in massive manufacturing data can extract huge business values while can also result in research challenges due to the heterogeneous data types, enormous volume and real-time velocity of manufacturing data. This paper provides an overview on big data analytics in manufacturing Internet of Things (MIoT). This paper first starts with a discussion on necessities and challenges of big data analytics in manufacturing data of MIoT. Then, the enabling technologies of big data analytics of manufacturing data are surveyed and discussed. Moreover, this paper also outlines the future directions in this promising area.
引用
收藏
页码:1279 / 1303
页数:25
相关论文
共 90 条
[51]   Manufacturing Analytics and Industrial Internet of Things [J].
Lade, Prasanth ;
Ghosh, Rumi ;
Srinivasan, Soundar .
IEEE INTELLIGENT SYSTEMS, 2017, 32 (03) :74-79
[52]   An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data [J].
Lei, Yaguo ;
Jia, Feng ;
Lin, Jing ;
Xing, Saibo ;
Ding, Steven X. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (05) :3137-3147
[53]   RETRACTED: Research on agricultural products supply chain inspection system based on internet of things (Retracted article. See DEC, 2022) [J].
Leng, Kaijun ;
Jin, Linbo ;
Shi, Wen ;
Van Nieuwenhuyse, Inneke .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 4) :S8919-S8927
[54]  
Li X., 2019, IEEE Transactions on Industrial Informatics (Early Access), P1
[55]   A Novel Friendly Jamming Scheme in Industrial Crowdsensing Networks against Eavesdropping Attack [J].
Li, Xuran ;
Wang, Qiu ;
Dai, Hong-Ning ;
Wang, Hao .
SENSORS, 2018, 18 (06)
[56]   A notification-oriented solution for data-intensive enterprise information systems - A cloud manufacturing case [J].
Liao, Yongxin ;
Panetto, Herve ;
Stadzisz, Paulo C. ;
Simao, Jean M. .
ENTERPRISE INFORMATION SYSTEMS, 2018, 12 (8-9) :942-959
[57]   Weakly Paired Multimodal Fusion for Object Recognition [J].
Liu, Huaping ;
Wu, Yupei ;
Sun, Fuchun ;
Fang, Bin ;
Guo, Di .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2018, 15 (02) :784-795
[58]   Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud [J].
Low, Yucheng ;
Gonzalez, Joseph ;
Kyrola, Aapo ;
Bickson, Danny ;
Guestrin, Carlos ;
Hellerstein, Joseph M. .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2012, 5 (08) :716-727
[59]   Automatic detection of false positive RFID readings using machine learning algorithms [J].
Ma, Haishu ;
Wang, Yi ;
Wang, Kesheng .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 91 :442-451
[60]   Large scale integration of wireless sensor network technologies for air quality monitoring at a logistics shipping base [J].
Molka-Danielsen, Judith ;
Engelsetha, Per ;
Wang, Hao .
JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2018, 10 :20-28