High-Speed Correlation Filter Tracking Algorithm Based on High-Confidence Updating Strategy

被引:1
作者
Lin Bin [1 ,2 ]
Li Ying [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Shaanxi Prov Key Lab Speech & Image Informat Proc, Xian 710129, Shaanxi, Peoples R China
[2] Guilin Univ Technol, Sch Sci, Guilin 541004, Guangxi, Peoples R China
关键词
machine vision; object tracking; correlation filter; scale estimation; model updating;
D O I
10.3788/AOS201939.0415003
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
To satisfy the real-time requirements of the online object tracking algorithm and improve the robustness of the algorithm, we propose a correlation filter-based tracking algorithm with high-confidence updating strategy. Multi-features arc extracted and integrated in the target region to construct robust appearance representation, and the projection matrix for dimension reduction of features is used to improve the operational efficiency of the algorithm. The correlation filter is used to localize the target at a high speed via the maximum response value. Two indicators of maximum response value and average peak-to-correlation energy arc utilized to design a high-confidence updating strategy. The results show that the proposed algorithm achieves high tracking precision and success rate on large-scale public datasets while running at 122.3 frame/s on average.
引用
收藏
页数:12
相关论文
共 28 条
  • [1] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [2] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [3] Danelljan M., 2014, P BRIT MACH VIS C
  • [4] ECO: Efficient Convolution Operators for Tracking
    Danelljan, Martin
    Bhat, Goutam
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6931 - 6939
  • [5] Discriminative Scale Space Tracking
    Danelljan, Martin
    Hager, Gustav
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (08) : 1561 - 1575
  • [6] Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking
    Danelljan, Martin
    Robinson, Andreas
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 : 472 - 488
  • [7] Adaptive Color Attributes for Real-Time Visual Tracking
    Danelljan, Martin
    Khan, Fahad Shahbaz
    Felsberg, Michael
    van de Weijer, Joost
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1090 - 1097
  • [8] Galoogahi HK, 2015, PROC CVPR IEEE, P4630, DOI 10.1109/CVPR.2015.7299094
  • [9] Deep Relative Tracking
    Gao, Junyu
    Zhang, Tianzhu
    Yang, Xiaoshan
    Xu, Changsheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) : 1845 - 1858
  • [10] [管皓 Guan Hao], 2016, [自动化学报, Acta Automatica Sinica], V42, P834