On distance (k, t)-Fibonacci numbers and their applications

被引:0
作者
Brod, Dorota [1 ]
机构
[1] Rzeszow Univ Technol, Fac Math & Appl Phys, Al Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
关键词
Fibonacci numbers; distance Fibonacci numbers; matching; generating function; FIBONACCI NUMBERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define a new generalization of Fibonacci numbers - distance (k, t)-Fibonacci numbers. This generalization is based on the concept of distance Fibonacci numbers. We give some graph and combinatorial interpretations of distance (k, t)-Fibonacci numbers. Moreover, we show generating functions and some identities for these numbers which generalize classical relations for Fibonacci numbers.
引用
收藏
页码:129 / 139
页数:11
相关论文
共 13 条
  • [1] Bednarz U., 2013, Comment. Math, V53, P34, DOI [10.14708/cm.v53i1.771, DOI 10.14708/CM.V53I1.771]
  • [2] Bednarz U, 2015, ARS COMBINATORIA, V118, P391
  • [3] Brod D., 2015, J APPL MATH, V2015, P1
  • [4] Diestel R., 2006, Graph theory
  • [5] Falcon S., 2014, General Mathematics Notes, V25, P148
  • [6] On the Fibonacci k-numbers
    Falcon, Sergio
    Plaza, Angel
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 32 (05) : 1615 - 1624
  • [7] Kwasnik M, 2000, ARS COMBINATORIA, V55, P139
  • [8] Miles EP., 1960, Am. Math. Mon, V67, P745, DOI [10.1080/00029890.1960.11989593, DOI 10.1080/00029890.1960.11989593]
  • [9] Sloane N. J. A., The On-line Encyclopedia of Integer Sequences
  • [10] Stakhov A. P., 1999, Reports of the National Academy of Sciences of Ukraine, V9, P46