Einstein-Podolsky-Rosen entanglement and asymmetric steering between distant macroscopic mechanical and magnonic systems

被引:62
作者
Tan, Huatang [1 ]
Li, Jie [2 ,3 ,4 ]
机构
[1] Huazhong Normal Univ, Dept Phys, Wuhan 430079, Peoples R China
[2] Zhejiang Univ, Zhejiang Prov Key Lab Quantum Technol & Device, Dept Phys, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[4] Delft Univ Technol, Dept Quantum Nanosci, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 01期
基金
中国国家自然科学基金; 欧洲研究理事会;
关键词
QUANTUM; MOTION; PARADOX; PHONONS;
D O I
10.1103/PhysRevResearch.3.013192
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a deterministic scheme for establishing hybrid Einstein-Podolsky-Rosen (EPR) entanglement channel between a macroscopic mechanical oscillator and a magnon mode in a distant yttrium-iron-garnet (YIG) sphere across about 10 GHz of frequency difference. The system consists of a driven electromechanical cavity which is unidirectionally coupled to a distant electromagnonical cavity inside which a YIG sphere is placed. We find that far beyond the sideband-resolved regime in the electromechanical subsystem, stationary phonon-magnon EPR entanglement can be achieved. This is realized by utilizing the output field of the electromechanical cavity being an intermediary which distributes the electromechanical entanglement to the magnons, thus establishing the remote phonon-magnon entanglement. The EPR entanglement is strong enough such that phonon-magnon quantum steering can be attainable in an asymmetric manner. This long-distance macroscopic hybrid EPR entanglement and steering enable potential applications not only in fundamental tests of quantum mechanics at the macroscale, but also in quantum networking and one-sided device-independent quantum cryptography based on magnonics and electromechanics.
引用
收藏
页数:8
相关论文
共 65 条
[1]  
Arcizet O, 2011, NAT PHYS, V7, P879, DOI [10.1038/NPHYS2070, 10.1038/nphys2070]
[2]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[3]   Models of wave-function collapse, underlying theories, and experimental tests [J].
Bassi, Angelo ;
Lochan, Kinjalk ;
Satin, Seema ;
Singh, Tejinder P. ;
Ulbricht, Hendrik .
REVIEWS OF MODERN PHYSICS, 2013, 85 (02) :471-527
[4]  
Bell J. S., 1964, PHYSICS, V1, P195, DOI DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195
[5]   Optical Manipulation of a Magnon-Photon Hybrid System [J].
Braggio, C. ;
Carugno, G. ;
Guarise, M. ;
Ortolan, A. ;
Ruoso, G. .
PHYSICAL REVIEW LETTERS, 2017, 118 (10)
[6]   One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering [J].
Branciard, Cyril ;
Cavalcanti, Eric G. ;
Walborn, Stephen P. ;
Scarani, Valerio ;
Wiseman, Howard M. .
PHYSICAL REVIEW A, 2012, 85 (01)
[7]   Stationary Entanglement between Light and Microwave via Ferromagnetic Magnons [J].
Cai, Qizhi ;
Liao, Jinkun ;
Zhou, Qiang .
ANNALEN DER PHYSIK, 2020, 532 (12)
[8]   ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM-MECHANICAL OSCILLATOR .1. ISSUES OF PRINCIPLE [J].
CAVES, CM ;
THORNE, KS ;
DREVER, RWP ;
SANDBERG, VD ;
ZIMMERMANN, M .
REVIEWS OF MODERN PHYSICS, 1980, 52 (02) :341-392
[9]   Quantum Trajectories and Their Statistics for Remotely Entangled Quantum Bits [J].
Chantasri, Areeya ;
Kimchi-Schwartz, Mollie E. ;
Roch, Nicolas ;
Siddiqi, Irfan ;
Jordan, Andrew N. .
PHYSICAL REVIEW X, 2016, 6 (04)
[10]  
de Lepinay L. M., 2020, ARXIV200912902