Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect

被引:2
作者
Xue, Liyuan [1 ]
Yu, Yanxia [2 ]
Cai, Xiaoya [1 ]
Pan, Hui [3 ]
Wang, Zisheng [1 ,3 ]
机构
[1] Jiangxi Normal Univ, Coll Phys & Commun Elect, Nanchang 330022, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[3] Univ Macau, Inst Appl Phys & Mat Engn, Fac Sci & Technol, Macau, Peoples R China
来源
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS | 2016年 / 520卷
基金
中国国家自然科学基金;
关键词
Pancharatnam phase; Quantum correlation; Dissipative environment; PROBABILITY RELATIONS; SEPARATED SYSTEMS; QUBITS; ENTANGLEMENT; COMPUTATION; CAVITY; STATE; DECOHERENCE; PROCESSOR; DISCORD;
D O I
10.1016/j.physc.2015.11.004
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 18
页数:11
相关论文
共 50 条
[1]  
Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[2]   Entangled macroscopic quantum states in two superconducting qubits [J].
Berkley, AJ ;
Xu, H ;
Ramos, RC ;
Gubrud, MA ;
Strauch, FW ;
Johnson, PR ;
Anderson, JR ;
Dragt, AJ ;
Lobb, CJ ;
Wellstood, FC .
SCIENCE, 2003, 300 (5625) :1548-1550
[4]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[5]   Quantum-information processing with circuit quantum electrodynamics [J].
Blais, Alexandre ;
Gambetta, Jay ;
Wallraff, A. ;
Schuster, D. I. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 75 (03)
[6]   Characterization of the positivity of the density matrix in terms of the coherence vector representation [J].
Byrd, MS ;
Khaneja, N .
PHYSICAL REVIEW A, 2003, 68 (06) :13
[7]   Geometric phases and criticality in spin-chain systems [J].
Carollo, ACM ;
Pachos, JK .
PHYSICAL REVIEW LETTERS, 2005, 95 (15)
[8]  
Casimir H B G., 1948, Proc. K. Ned. Akad. Wet., V51, P793, DOI DOI 10.4236/WJNSE.2015.52007
[9]   Superconducting quantum bits [J].
Clarke, John ;
Wilhelm, Frank K. .
NATURE, 2008, 453 (7198) :1031-1042
[10]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244