Alternative Splicing of PTC7 in Saccharomyces cerevisiae Determines Protein Localization

被引:67
作者
Juneau, Kara [1 ]
Nislow, Corey [2 ]
Davis, Ronald W. [1 ]
机构
[1] Stanford Univ, Stanford Genome Technol Ctr, Dept Biochem, Sch Med, Palo Alto, CA 94304 USA
[2] Univ Toronto, Banting & Best Dept Med Res, Dept Mol Genet, Donnelley Ctr Cellular & Biomol Res, Toronto, ON M5S 3E1, Canada
基金
美国国家卫生研究院;
关键词
FLUORESCENT PROTEIN; YEAST; RNA; INTRONS; GENE; SEQUENCES; DELETION; REVEALS; GENOMES; EXPRESSION;
D O I
10.1534/genetics.109.105155
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
It is Well established that. higher eukaryotes use alternative splicing to increase proteome complexity. In contrast, Saccharomyces cerevisiae, a single-cell eukaryote, conducts predominantly regulated splicing through retention of nonfunctional introns. In this article we describe our discovery of a functional intron in the PTC7 (YHR076W) gene that can be alternatively spliced to create two mRNAs that code for distinct proteins. These two proteins localize to different cellular compartments and have distinct cellular roles. The protein translated from the spliced mRNA localizes to the mitochondria and its expression is carbon-source dependent. In comparison, the protein translated from the unspliced mRNA contains a transmembrane domain, localizes to the nuclear envelope, and mediates the toxic effects of Latrunculin A exposure. In conclusion, we identified a definitive example of functional alternative splicing in S. cerevisiae that confers a measurable fitness benefit.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 41 条
[1]   Molecular evolution of eukaryotic genomes:: hemiascomycetous yeast spliceosomal introns [J].
Bon, E ;
Casaregola, S ;
Blandin, G ;
Llorente, B ;
Neuvéglise, C ;
Munsterkotter, M ;
Guldener, U ;
Mewes, HW ;
Van Helden, J ;
Dujon, B ;
Gaillardin, C .
NUCLEIC ACIDS RESEARCH, 2003, 31 (04) :1121-1135
[2]   MatGAT: An application that generates similarity/identity matrices using protein or DNA sequences [J].
Campanella, JJ ;
Bitincka, L ;
Smalley, J .
BMC BIOINFORMATICS, 2003, 4 (1)
[3]   Computational method to predict mitochondrially imported proteins and their targeting sequences [J].
Claros, MG ;
Vincens, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 241 (03) :779-786
[4]   Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast [J].
Davis, Carrie A. ;
Grate, Leslie ;
Spingola, Marc ;
Ares, Manuel, Jr. .
NUCLEIC ACIDS RESEARCH, 2000, 28 (08) :1700-1706
[5]   Comparative genomic hybridization provides new insights into the molecular taxonomy of the Saccharomyces sensu stricto complex [J].
Edwards-Ingram, LC ;
Gent, ME ;
Hoyle, DC ;
Hayes, A ;
Stateva, LI ;
Oliver, SG .
GENOME RESEARCH, 2004, 14 (06) :1043-1051
[6]   MEIOSIS-SPECIFIC RNA SPLICING IN YEAST [J].
ENGEBRECHT, J ;
VOELKELMEIMAN, K ;
ROEDER, GS .
CELL, 1991, 66 (06) :1257-1268
[7]   Genetic basis of proteome variation in yeast [J].
Foss, Eric J. ;
Radulovic, Dragan ;
Shaffer, Scott A. ;
Ruderfer, Douglas M. ;
Bedalov, Antonio ;
Goodlett, David R. ;
Kruglyak, Leonid .
NATURE GENETICS, 2007, 39 (11) :1369-1375
[8]   Nonsense-mediated mRNA decay in Saccharomyces cerevisiae [J].
González, CI ;
Bhattacharya, A ;
Wang, WR ;
Peltz, SW .
GENE, 2001, 274 (1-2) :15-25
[9]   ESPript:: analysis of multiple sequence alignments in PostScript [J].
Gouet, P ;
Courcelle, E ;
Stuart, DI ;
Métoz, F .
BIOINFORMATICS, 1999, 15 (04) :305-308
[10]   The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression [J].
Grund, Stefanie E. ;
Fischer, Tamas ;
Cabal, Ghislain G. ;
Antunez, Oreto ;
Perez-Ortin, Jose E. ;
Hurt, Ed .
JOURNAL OF CELL BIOLOGY, 2008, 182 (05) :897-910