A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs

被引:76
作者
Cheng, Chi-Tung [1 ]
Wang, Yirui [2 ]
Chen, Huan-Wu [3 ]
Hsiao, Po-Meng [4 ]
Yeh, Chun-Nan [5 ]
Hsieh, Chi-Hsun [1 ]
Miao, Shun [2 ]
Xiao, Jing [2 ]
Liao, Chien-Hung [1 ,6 ]
Lu, Le [2 ]
机构
[1] Chang Gung Univ, Chang Gung Mem Hosp, Dept Trauma & Emergency Surg, Taoyuan, Taiwan
[2] PAII Inc, Bethesda, MD USA
[3] Chang Gung Univ, Chang Gung Mem Hosp, Dept Med Imaging & Intervent, Div Emergency & Crit Care Radiol,Coll Med, Taoyuan, Taiwan
[4] New Taipei Municipal TuCheng Hosp, New Taipei, Taiwan
[5] Chang Gung Univ, Chang Gung Mem Hosp, Dept Surg, Taoyuan, Taiwan
[6] Chang Gung Mem Hosp, Ctr Artificial Intelligence Med, Taoyuan, Taiwan
关键词
ARTIFICIAL-INTELLIGENCE; HIP;
D O I
10.1038/s41467-021-21311-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pelvic radiograph (PXR) is essential for detecting proximal femur and pelvis injuries in trauma patients, which is also the key component for trauma survey. None of the currently available algorithms can accurately detect all kinds of trauma-related radiographic findings on PXRs. Here, we show a universal algorithm can detect most types of trauma-related radiographic findings on PXRs. We develop a multiscale deep learning algorithm called PelviXNet trained with 5204 PXRs with weakly supervised point annotation. PelviXNet yields an area under the receiver operating characteristic curve (AUROC) of 0.973 (95% CI, 0.960-0.983) and an area under the precision-recall curve (AUPRC) of 0.963 (95% CI, 0.948-0.974) in the clinical population test set of 1888 PXRs. The accuracy, sensitivity, and specificity at the cutoff value are 0.924 (95% CI, 0.912-0.936), 0.908 (95% CI, 0.885-0.908), and 0.932 (95% CI, 0.919-0.946), respectively. PelviXNet demonstrates comparable performance with radiologists and orthopedics in detecting pelvic and hip fractures. Pelvic radiographs (PXRs) are essential for detecting proximal femur and pelvis injuries in trauma patients, but none of the currently available algorithms can detect all kinds of trauma-related radiographic findings. Here, the authors develop a multiscale deep learning algorithm trained with weakly supervised point annotation.
引用
收藏
页数:10
相关论文
共 52 条
[11]   Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs [J].
Cheng, Chi-Tung ;
Ho, Tsung-Ying ;
Lee, Tao-Yi ;
Chang, Chih-Chen ;
Chou, Ching-Cheng ;
Chen, Chih-Chi ;
Chung, I-Fang ;
Liao, Chien-Hung .
EUROPEAN RADIOLOGY, 2019, 29 (10) :5469-5477
[12]   Hemostasis as soon as possible? The role of the time to angioembolization in the management of pelvic fracture [J].
Chou, Chang-Hua ;
Wu, Yu-Tung ;
Fu, Chih-Yuan ;
Liao, Chien-Hung ;
Wang, Shang-Yu ;
Bajani, Francesco ;
Hsieh, Chi-Hsun .
WORLD JOURNAL OF EMERGENCY SURGERY, 2019, 14 (1)
[13]   Automated detection and classification of the proximal humerus fracture by using deep learning algorithm [J].
Chung, Seok Won ;
Han, Seung Seog ;
Lee, Ji Whan ;
Oh, Kyung-Soo ;
Kim, Na Ra ;
Yoon, Jong Pil ;
Kim, Joon Yub ;
Moon, Sung Hoon ;
Kwon, Jieun ;
Lee, Hyo-Jin ;
Noh, Young-Min ;
Kim, Youngjun .
ACTA ORTHOPAEDICA, 2018, 89 (04) :468-473
[14]  
Ditterrich T., 1997, Artificial Intelligence Magzine, V4, P97
[15]   Combined Benefit of Quantitative Three-Compartment Breast Image Analysis and Mammography Radiomics in the Classification of Breast Masses in a Clinical Data Set [J].
Drukker, Karen ;
Giger, Maryellen L. ;
Joe, Bonnie N. ;
Kerlikowske, Karla ;
Greenwood, Heather ;
Drukteinis, Jennifer S. ;
Niell, Bethany ;
Fan, Bo ;
Malkov, Serghei ;
Avila, Jesus ;
Kazemi, Leila ;
Shepherd, John .
RADIOLOGY, 2019, 290 (03) :621-628
[16]   Deep learning to detect Alzheimer's disease from neuroimaging: A systematic literature review [J].
Ebrahimighahnavieh, Mr Amir ;
Luo, Suhuai ;
Chiong, Raymond .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 187
[17]   Pelvic trauma mortality reduced by integrated trauma care [J].
Fitzgerald, Mark ;
Esser, Max ;
Russ, Matthias ;
Mathew, Joseph ;
Varma, Dinesh ;
Wilkinson, Andrew ;
Mannambeth, Rejith V. ;
Smit, Devilliers ;
Bernard, Stephen ;
Mitra, Biswadev .
EMERGENCY MEDICINE AUSTRALASIA, 2017, 29 (04) :444-449
[18]   Surgery for a fracture of the hip within 24 hours of admission is independently associated with reduced short-term post-operative complications [J].
Fu, M. C. ;
Boddapati, V. ;
Gausden, E. B. ;
Samuel, A. M. ;
Russell, L. A. ;
Lane, J. M. .
BONE & JOINT JOURNAL, 2017, 99B (09) :1216-1222
[19]   Diagnostic errors in an accident and emergency department [J].
Guly, HR .
EMERGENCY MEDICINE JOURNAL, 2001, 18 (04) :263-269
[20]   Errors in fracture diagnoses in the emergency deparment - Characteristics of patients and diurnal variation [J].
Hallas P. ;
Ellingsen T. .
BMC Emergency Medicine, 6 (1)