A Riesz-Feller space-fractional backward diffusion problem with a time-dependent coefficient: regularization and error estimates

被引:5
|
作者
Nguyen Huy Tuan [1 ]
Dang Duc Trong [1 ]
Dinh Nguyen Duy Hai [1 ,2 ]
Duong Dang Xuan Thanh [3 ]
机构
[1] Vietnam Natl Univ, Univ Sci, Dept Math, 227 Nguyen Van Cu St,Dist 5, Ho Chi Minh City, Vietnam
[2] Ho Chi Minh City Univ Transport, Fac Basic Sci, 2,D3 St,Ward 25, Ho Chi Minh City, Vietnam
[3] Quantitat & Computat Finance Lab, Ho Chi Minh, Vietnam
关键词
space-fractional backward diffusion problem; ill-posed problem; regularization; error estimate; HILBERT SCALES;
D O I
10.1002/mma.4284
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Riesz-Feller space-fractional backward diffusion problem with a time-dependent coefficient u(x,t)+f(x,t),(x,t)Rx(0,T). We show that this problem is ill-posed; therefore, we propose a convolution regularization method to solve it. New error estimates for the regularized solution are given under a priori and a posteriori parameter choice rules, respectively. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:4040 / 4064
页数:25
相关论文
共 50 条
  • [41] Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations
    Lu, Xin
    Fang, Zhi-Wei
    Sun, Hai-Wei
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 66 (1-2) : 673 - 700
  • [42] Second-order BDF time approximation for Riesz space-fractional diffusion equations
    Liao, Hong-Lin
    Lyu, Pin
    Vong, Seakweng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 144 - 158
  • [43] Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations
    Xin Lu
    Zhi-Wei Fang
    Hai-Wei Sun
    Journal of Applied Mathematics and Computing, 2021, 66 : 673 - 700
  • [44] AN UNDETERMINED TIME-DEPENDENT COEFFICIENT IN A FRACTIONAL DIFFUSION EQUATION
    Zhang, Zhidong
    INVERSE PROBLEMS AND IMAGING, 2017, 11 (05) : 875 - 900
  • [45] An inverse time-dependent source problem for a time-space fractional diffusion equation
    Li, Y. S.
    Wei, T.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 257 - 271
  • [46] Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation
    Ervin, Vincent J.
    Heuer, Norbert
    Roop, John Paul
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) : 572 - 591
  • [47] Optimal error bound and truncation regularization method for a backward time-fractional diffusion problem in Hilbert scales
    Dinh Nguyen Duy Hai
    Dang Duc Trong
    APPLIED MATHEMATICS LETTERS, 2020, 107
  • [48] FAST ITERATIVE SOLVERS FOR LINEAR SYSTEMS ARISING FROM TIME-DEPENDENT SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Pan, Jianyu
    Ng, Michael K.
    Wang, Hong
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : A2806 - A2826
  • [49] Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation
    Wang, Jun-Gang
    Wei, Ting
    Zhou, Yu-Bin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 277 - 292
  • [50] BACKWARD PROBLEM FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION
    Jia, Junxiong
    Peng, Jigen
    Gao, Jinghuai
    Li, Yujiao
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (03) : 773 - 799