A Riesz-Feller space-fractional backward diffusion problem with a time-dependent coefficient: regularization and error estimates

被引:5
|
作者
Nguyen Huy Tuan [1 ]
Dang Duc Trong [1 ]
Dinh Nguyen Duy Hai [1 ,2 ]
Duong Dang Xuan Thanh [3 ]
机构
[1] Vietnam Natl Univ, Univ Sci, Dept Math, 227 Nguyen Van Cu St,Dist 5, Ho Chi Minh City, Vietnam
[2] Ho Chi Minh City Univ Transport, Fac Basic Sci, 2,D3 St,Ward 25, Ho Chi Minh City, Vietnam
[3] Quantitat & Computat Finance Lab, Ho Chi Minh, Vietnam
关键词
space-fractional backward diffusion problem; ill-posed problem; regularization; error estimate; HILBERT SCALES;
D O I
10.1002/mma.4284
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Riesz-Feller space-fractional backward diffusion problem with a time-dependent coefficient u(x,t)+f(x,t),(x,t)Rx(0,T). We show that this problem is ill-posed; therefore, we propose a convolution regularization method to solve it. New error estimates for the regularized solution are given under a priori and a posteriori parameter choice rules, respectively. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:4040 / 4064
页数:25
相关论文
共 50 条
  • [31] Determination of Initial Distribution for a Space-Fractional Diffusion Equation with Time-Dependent Diffusivity
    Tran Nhat Luan
    Tra Quoc Khanh
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3461 - 3487
  • [32] Determination of Initial Distribution for a Space-Fractional Diffusion Equation with Time-Dependent Diffusivity
    Tran Nhat Luan
    Tra Quoc Khanh
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3461 - 3487
  • [33] A modified regularized algorithm for a semilinear space-fractional backward diffusion problem
    Jiang, Xiaoying
    Xu, Dinghua
    Zhang, Qifeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (16) : 5996 - 6006
  • [34] A Tikhonov regularization method for solving a backward time-space fractional diffusion problem
    Feng, Xiaoli
    Zhao, Meixia
    Qian, Zhi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
  • [35] An inverse problem of finding a time-dependent coefficient in a fractional diffusion equation
    Durdiev, Durdimurod
    Durdiev, Dilshod
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (05) : 1437 - 1452
  • [36] Data regularization for a backward time-fractional diffusion problem
    Wang, Liyan
    Liu, Jijun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (11) : 3613 - 3626
  • [37] On a backward nonlinear parabolic equation with time and space dependent thermal conductivity: Regularization and error estimates
    Pham Hoang Quan
    Dang Duc Trong
    Le Minh Triet
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2014, 22 (03): : 375 - 401
  • [38] An efficient quadratic finite volume method for variable coefficient Riesz space-fractional diffusion equations
    Li, Fangli
    Fu, Hongfei
    Liu, Jun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2934 - 2951
  • [39] Total variation regularization for a backward time-fractional diffusion problem
    Wang, Liyan
    Liu, Jijun
    INVERSE PROBLEMS, 2013, 29 (11)
  • [40] Regularization by projection for a backward problem of the time-fractional diffusion equation
    Ren, Caixuan
    Xu, Xiang
    Lu, Shuai
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2014, 22 (01): : 121 - 139