A Riesz-Feller space-fractional backward diffusion problem with a time-dependent coefficient: regularization and error estimates

被引:5
|
作者
Nguyen Huy Tuan [1 ]
Dang Duc Trong [1 ]
Dinh Nguyen Duy Hai [1 ,2 ]
Duong Dang Xuan Thanh [3 ]
机构
[1] Vietnam Natl Univ, Univ Sci, Dept Math, 227 Nguyen Van Cu St,Dist 5, Ho Chi Minh City, Vietnam
[2] Ho Chi Minh City Univ Transport, Fac Basic Sci, 2,D3 St,Ward 25, Ho Chi Minh City, Vietnam
[3] Quantitat & Computat Finance Lab, Ho Chi Minh, Vietnam
关键词
space-fractional backward diffusion problem; ill-posed problem; regularization; error estimate; HILBERT SCALES;
D O I
10.1002/mma.4284
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Riesz-Feller space-fractional backward diffusion problem with a time-dependent coefficient u(x,t)+f(x,t),(x,t)Rx(0,T). We show that this problem is ill-posed; therefore, we propose a convolution regularization method to solve it. New error estimates for the regularized solution are given under a priori and a posteriori parameter choice rules, respectively. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:4040 / 4064
页数:25
相关论文
共 50 条
  • [21] Sobolev-type regularization method for the backward diffusion equation with fractional Laplacian and time-dependent coefficient
    Khieu, Tran Thi
    Khanh, Tra Quoc
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (02) : 2085 - 2101
  • [22] A new a posteriori parameter choice strategy for the convolution regularization of the space-fractional backward diffusion problem
    Shi, Cong
    Wang, Chen
    Zheng, Guanghui
    Wei, Ting
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 233 - 248
  • [23] Optimal error bound and modified kernel method for a space-fractional backward diffusion problem
    Liu, Songshu
    Feng, Lixin
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [24] A new diagonal and Toeplitz splitting preconditioning method for solving time-dependent Riesz space-fractional diffusion equations
    Tang, Shi-Ping
    Huang, Yu-Mei
    APPLIED MATHEMATICS LETTERS, 2024, 149
  • [25] Regularization Technique for an Inverse Space-Fractional Backward Heat Conduction Problem
    Milad Karimi
    Fridoun Moradlou
    Mojtaba Hajipour
    Journal of Scientific Computing, 2020, 83
  • [26] Regularization Technique for an Inverse Space-Fractional Backward Heat Conduction Problem
    Karimi, Milad
    Moradlou, Fridoun
    Hajipour, Mojtaba
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (02)
  • [27] Inverse problem for nonlinear backward space-fractional diffusion equation
    Hai Dinh Nguyen Duy
    Tuan Nguyen Huy
    Long Le Dinh
    Gia Quoc Thong Le
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (04): : 423 - 443
  • [28] FRACTIONAL DIFFUSION WITH TIME-DEPENDENT DIFFUSION COEFFICIENT
    Costa, F. S.
    De Oliveira, E. Capelas
    Plata, Adrian R. G.
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 87 (01) : 59 - 79
  • [29] The Backward Problem for Nonlinear Fractional Diffusion Equation with Time-Dependent Order
    Dien, Nguyen Minh
    Trong, Dang Duc
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3345 - 3359
  • [30] The Backward Problem for Nonlinear Fractional Diffusion Equation with Time-Dependent Order
    Nguyen Minh Dien
    Dang Duc Trong
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3345 - 3359