A Riesz-Feller space-fractional backward diffusion problem with a time-dependent coefficient: regularization and error estimates

被引:5
|
作者
Nguyen Huy Tuan [1 ]
Dang Duc Trong [1 ]
Dinh Nguyen Duy Hai [1 ,2 ]
Duong Dang Xuan Thanh [3 ]
机构
[1] Vietnam Natl Univ, Univ Sci, Dept Math, 227 Nguyen Van Cu St,Dist 5, Ho Chi Minh City, Vietnam
[2] Ho Chi Minh City Univ Transport, Fac Basic Sci, 2,D3 St,Ward 25, Ho Chi Minh City, Vietnam
[3] Quantitat & Computat Finance Lab, Ho Chi Minh, Vietnam
关键词
space-fractional backward diffusion problem; ill-posed problem; regularization; error estimate; HILBERT SCALES;
D O I
10.1002/mma.4284
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Riesz-Feller space-fractional backward diffusion problem with a time-dependent coefficient u(x,t)+f(x,t),(x,t)Rx(0,T). We show that this problem is ill-posed; therefore, we propose a convolution regularization method to solve it. New error estimates for the regularized solution are given under a priori and a posteriori parameter choice rules, respectively. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:4040 / 4064
页数:25
相关论文
共 50 条