Parameter augmentation for basic hypergeometric series .2.

被引:67
作者
Chen, WYC
Liu, ZG
机构
[1] NANKAI UNIV,NANKAI INST MATH,TIANJIN 300071,PEOPLES R CHINA
[2] XINXIANG EDUC COLL,DEPT MATH,XINXIANG 453000,HENAN,PEOPLES R CHINA
基金
中国国家自然科学基金;
关键词
D O I
10.1006/jcta.1997.2801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper, we explored the idea of parameter augmentation for basic hypergeometric series, which provides a method of proving q-summation and integral formula based special cases obtained by reducing some parameters to zero. In the present paper, we shall mainly deal with parameter augmentation for q-integrals such as the Askey-Wilson integral, the Nassrallah-Rahman integral, the q-integral form of Sears transformation, and Gasper's formula of the extension of the Askey-Roy integral. The parameter augmentation is realized by another operator, which leads to considerable simplications of some well known q-summation and transformation formulas. A brief treatment of the Rogers-Szego polynomials is also given. (C) 1997 Academic Press.
引用
收藏
页码:175 / 195
页数:21
相关论文
共 35 条
[1]   Q-IDENTITIES OF AULUCK CARLITZ AND ROGERS [J].
ANDREWS, GE .
DUKE MATHEMATICAL JOURNAL, 1966, 33 (03) :575-&
[2]   ANOTHER Q-EXTENSION OF THE BETA-FUNCTION [J].
ANDREWS, GE ;
ASKEY, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (01) :97-100
[3]  
ANDREWS GE, 1971, STUD APPL MATH, V50, P345
[4]   APPLICATIONS OF BASIC HYPERGEOMETRIC FUNCTIONS [J].
ANDREWS, GE .
SIAM REVIEW, 1974, 16 (04) :441-484
[5]  
ANDREWS GE, 1986, CBMS REGIONAL C LECT, V66
[6]  
ASKEY R, 1983, INDIAN J PURE AP MAT, V14, P892
[7]  
ASKEY R, 1983, STUDIES PURE MATH, P55
[8]  
ASKEY RA, 1985, MEMOIRS AM MATH SOC, V54
[9]  
ATAKISHIYEV NM, 1994, J PHYS A, V27, pL661
[10]   A SIMPLE PROOF OF MEHLER FORMULA FOR Q-HERMITE POLYNOMIALS [J].
BRESSOUD, DM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1980, 29 (04) :577-580