Quantum Energy and Charge Transfer at Two-Dimensional Interfaces

被引:46
作者
Bradac, Carlo [3 ]
Xu, Zai-Quan [1 ]
Aharonovich, Igor [1 ,2 ]
机构
[1] Univ Technol Sydney, Fac Sci, Sch Math & Phys Sci, Ultimo, NSW 2007, Australia
[2] Univ Technol Sydney, ARC Ctr Excellence Transformat Meta Opt Syst TMOS, Ultimo, NSW 2007, Australia
[3] Trent Univ, Dept Phys & Astron, Peterborough, ON K9J 0G2, Canada
基金
澳大利亚研究理事会;
关键词
energy transfer; charge transfer; 2D materials; FRET; Transition metal dichalcogenides; graphene;
D O I
10.1021/acs.nanolett.0c04152
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Energy and charge transfer processes in interacting donor-acceptor systems are the bedrock of many fundamental studies and technological applications ranging from biosensing to energy storage and quantum optoelectronics. Central to the understanding and utilization of these transfer processes is having full control over the donor-acceptor distance. With their atomic thickness and ease of integrability, two-dimensional materials are naturally emerging as an ideal platform for the task. Here, we review how van der Waals semiconductors are shaping the field. We present a selection of some of the most significant demonstrations involving transfer processes in layered materials that deepen our understanding of transfer dynamics and are leading to intriguing practical realizations. Alongside current achievements, we discuss outstanding challenges and future opportunities.
引用
收藏
页码:1193 / 1204
页数:12
相关论文
共 65 条
[1]  
Andrews DavidL., 2009, Resonance Energy Transfer: Theoretical Foundations and Developing Applications
[2]   Charge-tuneable biexciton complexes in monolayer WSe2 [J].
Barbone, Matteo ;
Montblanch, Alejandro R. -P. ;
Kara, Dhiren M. ;
Palacios-Berraquero, Carmen ;
Cadore, Alisson R. ;
De Fazio, Domenico ;
Pingault, Benjamin ;
Mostaani, Elaheh ;
Li, Han ;
Chen, Bin ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Tongay, Sefaattin ;
Wang, Gang ;
Ferrari, Andrea C. ;
Atature, Mete .
NATURE COMMUNICATIONS, 2018, 9
[3]  
Barnes WL, 1998, J MOD OPTIC, V45, P661, DOI 10.1080/09500349808230614
[4]   Spontaneous light emission in complex nanostructures [J].
Blanco, LA ;
de Abajo, FJG .
PHYSICAL REVIEW B, 2004, 69 (20) :205414-1
[5]  
Brenneis A, 2015, NAT NANOTECHNOL, V10, P135, DOI [10.1038/NNANO.2014.276, 10.1038/nnano.2014.276]
[6]   Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir [J].
Brotons-Gisbert, Mauro ;
Branny, Artur ;
Kumar, Santosh ;
Picard, Raphael ;
Proux, Raphael ;
Gray, Mason ;
Burch, Kenneth S. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Gerardot, Brian D. .
NATURE NANOTECHNOLOGY, 2019, 14 (05) :442-446
[7]   Quantum computing with graphene plasmons [J].
Calafell, I. Alonso ;
Cox, J. D. ;
Radonjic, M. ;
Saavedra, J. R. M. ;
Garcia de Abajo, F. J. ;
Rozema, L. A. ;
Walther, P. .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[8]   Fast electrical modulation of strong near-field interactions between erbium emitters and graphene [J].
Cano, Daniel ;
Ferrier, Alban ;
Soundarapandian, Karuppasamy ;
Reserbat-Plantey, Antoine ;
Scarafagio, Marion ;
Tallaire, Alexandre ;
Seyeux, Antoine ;
Marcus, Philippe ;
de Riedmatten, Hugues ;
Goldner, Philippe ;
Koppens, Frank H. L. ;
Tielrooij, Klaas-Jan .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]  
Chance R.R., 1978, Advances in Chemical Physics, P1